Department of Animal Science and Technology, Tianjin Agricultural University, Xiqing District, Tianjin 300384, China.
Int J Mol Sci. 2013 Aug 14;14(8):16706-18. doi: 10.3390/ijms140816706.
This study was conducted to compare: (1) protein chemical characteristics, including the amide I and II region, as well as protein secondary structure; and (2) carbohydrate internal structure and functional groups spectral intensities between the frost damaged wheat and normal wheat using synchrotron radiation-based Fourier transform infrared microspectroscopy (SR-FTIRM). Fingerprint regions of specific interest in our study involved protein and carbohydrate functional group band assignments, including protein amide I and II (ca. 1774-1475 cm(-1)), structural carbohydrates (SCHO, ca. 1498-1176 cm(-1)), cellulosic compounds (CELC, ca. 1295-1176 cm(-1)), total carbohydrates (CHO, ca. 1191-906 cm(-1)) and non-structural carbohydrates (NSCHO, ca. 954-809 cm(-1)). The results showed that frost did cause variations in spectral profiles in wheat grains. Compared with healthy wheat grains, frost damaged wheat had significantly lower (p < 0.05) spectral intensities in height and area ratios of amide I to II and almost all the spectral parameters of carbohydrate-related functional groups, including SCHO, CHO and NSCHO. Furthermore, the height ratio of protein amide I to the third peak of CHO and the area ratios of protein amide (amide I + II) to carbohydrate compounds (CHO and SCHO) were also changed (p < 0.05) in damaged wheat grains. It was concluded that the SR-FTIR microspectroscopic technique was able to examine inherent molecular structure features at an ultra-spatial resolution (10 × 10 μm) between different wheat grains samples. The structural characterization of wheat was influenced by climate conditions, such as frost damage, and these structural variations might be a major reason for the decreases in nutritive values, nutrients availability and milling and baking quality in wheat grains.
(1)使用同步辐射傅里叶变换红外显微镜(SR-FTIRM)比较霜害小麦与正常小麦之间的蛋白质化学特性,包括酰胺 I 和 II 区以及蛋白质二级结构;以及(2)碳水化合物内部结构和功能基团的光谱强度。我们研究中感兴趣的特定指纹区域涉及蛋白质和碳水化合物功能基团带的分配,包括蛋白质酰胺 I 和 II(约 1774-1475cm(-1))、结构碳水化合物(SCHO,约 1498-1176cm(-1))、纤维素化合物(CELC,约 1295-1176cm(-1))、总碳水化合物(CHO,约 1191-906cm(-1))和非结构碳水化合物(NSCHO,约 954-809cm(-1))。结果表明,霜害确实会导致小麦籽粒光谱谱图发生变化。与健康小麦籽粒相比,霜害小麦的酰胺 I 与 II 的高度和面积比值以及与碳水化合物相关功能基团的几乎所有光谱参数均显著降低(p < 0.05),包括 SCHO、CHO 和 NSCHO。此外,在受损小麦籽粒中,蛋白质酰胺 I 与 CHO 的第三峰高度比以及蛋白质酰胺(酰胺 I + II)与碳水化合物化合物(CHO 和 SCHO)的面积比也发生了变化(p < 0.05)。总之,SR-FTIR 微光谱技术能够以超空间分辨率(10×10μm)检查不同小麦籽粒样品之间的固有分子结构特征。小麦的结构特征受气候条件的影响,如霜害,这些结构变化可能是小麦籽粒中营养价值、营养物质可用性以及制粉和烘焙质量下降的主要原因。