Suppr超能文献

酿酒酵母中(S)-2-氨基丁酸和(S)-2-氨基丁醇的生产。

Production of (S)-2-aminobutyric acid and (S)-2-aminobutanol in Saccharomyces cerevisiae.

作者信息

Weber Nora, Hatsch Anaëlle, Labagnere Ludivine, Heider Harald

机构信息

Evolva SA, Duggingerstrasse 23, 4153, Reinach, Switzerland.

出版信息

Microb Cell Fact. 2017 Mar 23;16(1):51. doi: 10.1186/s12934-017-0667-z.

Abstract

BACKGROUND

Saccharomyces cerevisiae (baker's yeast) has great potential as a whole-cell biocatalyst for multistep synthesis of various organic molecules. To date, however, few examples exist in the literature of the successful biosynthetic production of chemical compounds, in yeast, that do not exist in nature. Considering that more than 30% of all drugs on the market are purely chemical compounds, often produced by harsh synthetic chemistry or with very low yields, novel and environmentally sound production routes are highly desirable. Here, we explore the biosynthetic production of enantiomeric precursors of the anti-tuberculosis and anti-epilepsy drugs ethambutol, brivaracetam, and levetiracetam. To this end, we have generated heterologous biosynthetic pathways leading to the production of (S)-2-aminobutyric acid (ABA) and (S)-2-aminobutanol in baker's yeast.

RESULTS

We first designed a two-step heterologous pathway, starting with the endogenous amino acid L-threonine and leading to the production of enantiopure (S)-2-aminobutyric acid. The combination of Bacillus subtilis threonine deaminase and a mutated Escherichia coli glutamate dehydrogenase resulted in the intracellular accumulation of 0.40 mg/L of (S)-2-aminobutyric acid. The combination of a threonine deaminase from Solanum lycopersicum (tomato) with two copies of mutated glutamate dehydrogenase from E. coli resulted in the accumulation of comparable amounts of (S)-2-aminobutyric acid. Additional L-threonine feeding elevated (S)-2-aminobutyric acid production to more than 1.70 mg/L. Removing feedback inhibition of aspartate kinase HOM3, an enzyme involved in threonine biosynthesis in yeast, elevated (S)-2-aminobutyric acid biosynthesis to above 0.49 mg/L in cultures not receiving additional L-threonine. We ultimately extended the pathway from (S)-2-aminobutyric acid to (S)-2-aminobutanol by introducing two reductases and a phosphopantetheinyl transferase. The engineered strains produced up to 1.10 mg/L (S)-2-aminobutanol.

CONCLUSIONS

Our results demonstrate the biosynthesis of (S)-2-aminobutyric acid and (S)-2-aminobutanol in yeast. To our knowledge this is the first time that the purely synthetic compound (S)-2-aminobutanol has been produced in vivo. This work paves the way to greener and more sustainable production of chemical entities hitherto inaccessible to synthetic biology.

摘要

背景

酿酒酵母(面包酵母)作为用于多步合成各种有机分子的全细胞生物催化剂具有巨大潜力。然而,迄今为止,文献中几乎没有成功在酵母中生物合成自然界不存在的化合物的例子。考虑到市场上超过30%的药物是纯化学合成化合物,通常通过苛刻的合成化学方法生产或产率极低,因此非常需要新颖且环保的生产路线。在此,我们探索抗结核和抗癫痫药物乙胺丁醇、布瓦西坦和左乙拉西坦对映体前体的生物合成生产。为此,我们构建了异源生物合成途径,以在面包酵母中生产(S)-2-氨基丁酸(ABA)和(S)-2-氨基丁醇。

结果

我们首先设计了一条两步异源途径,从内源性氨基酸L-苏氨酸开始,最终生产对映体纯的(S)-2-氨基丁酸。枯草芽孢杆菌苏氨酸脱氨酶与突变的大肠杆菌谷氨酸脱氢酶的组合导致细胞内积累了0.40mg/L的(S)-2-氨基丁酸。番茄的苏氨酸脱氨酶与两份突变的大肠杆菌谷氨酸脱氢酶的组合导致积累了相当数量的(S)-2-氨基丁酸。额外添加L-苏氨酸使(S)-2-氨基丁酸产量提高到1.70mg/L以上。消除酵母中参与苏氨酸生物合成的天冬氨酸激酶HOM3的反馈抑制,在未额外添加L-苏氨酸的培养物中,使(S)-2-氨基丁酸生物合成提高到0.49mg/L以上。我们最终通过引入两种还原酶和一种磷酸泛酰巯基乙胺基转移酶,将途径从(S)-2-氨基丁酸扩展到(S)-2-氨基丁醇。工程菌株产生了高达1.10mg/L的(S)-2-氨基丁醇。

结论

我们的结果证明了酵母中(S)-2-氨基丁酸和(S)-2-氨基丁醇的生物合成。据我们所知,这是首次在体内生产纯合成化合物(S)-2-氨基丁醇。这项工作为合成生物学迄今无法获得的化学实体的更绿色、更可持续生产铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7db/5364695/4c02e13cfdee/12934_2017_667_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验