McKetta Department of Chemical Engineering, The University of Texas at Austin , Austin, Texas 78712, United States.
The Molecular Foundry and National Center for Electron Microscopy, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.
Nano Lett. 2017 Apr 12;17(4):2611-2620. doi: 10.1021/acs.nanolett.7b00404. Epub 2017 Mar 24.
Doped metal oxides are plasmonic materials that boast both synthetic and postsynthetic spectral tunability. They have already enabled promising smart window and optoelectronic technologies and have been proposed for use in surface enhanced infrared absorption spectroscopy (SEIRA) and sensing applications. Herein, we report the first step toward realization of the former utilizing cubic F and Sn codoped InO nanocrystals (NCs) to couple to the C-H vibration of surface-bound oleate ligands. Electron energy loss spectroscopy is used to map the strong near-field enhancement around these NCs that enables localized surface plasmon resonance (LSPR) coupling between adjacent nanocrystals and LSPR-molecular vibration coupling. Fourier transform infrared spectroscopy measurements and finite element simulations are applied to observe and explain the nature of the coupling phenomena, specifically addressing coupling in mesoscale assembled films. The Fano line shape signatures of LSPR-coupled molecular vibrations are rationalized with two-port temporal coupled mode theory. With this combined theoretical and experimental approach, we describe the influence of coupling strength and relative detuning between the molecular vibration and LSPR on the enhancement factor and further explain the basis of the observed Fano line shape by deconvoluting the combined response of the LSPR and molecular vibration in transmission, absorption and reflection. This study therefore illustrates various factors involved in determining the LSPR-LSPR and LSPR-molecular vibration coupling for metal oxide materials and provides a fundamental basis for the design of sensing or SEIRA substrates.
掺杂金属氧化物是一种等离子体材料,具有合成和后合成光谱可调谐性。它们已经实现了有前途的智能窗口和光电技术,并被提议用于表面增强红外吸收光谱(SEIRA)和传感应用。在此,我们报告了利用立方 F 和 Sn 共掺杂 InO 纳米晶体(NCs)与表面结合的油酸盐配体的 C-H 振动耦合的前实现的第一步。电子能量损失光谱用于绘制这些 NCs 周围的强近场增强图,从而实现相邻纳米晶体之间的局域表面等离子体共振(LSPR)耦合和 LSPR-分子振动耦合。傅里叶变换红外光谱测量和有限元模拟用于观察和解释耦合现象的性质,特别是解决介观组装膜中的耦合。通过两端口时变耦合模式理论对 LSPR 耦合分子振动的 Fano 线形状特征进行了合理化。通过这种结合的理论和实验方法,我们描述了分子振动与 LSPR 之间的耦合强度和相对失谐对增强因子的影响,并通过在传输、吸收和反射中对 LSPR 和分子振动的综合响应进行反卷积,进一步解释了观察到的 Fano 线形状的基础。因此,本研究说明了决定金属氧化物材料中 LSPR-LSPR 和 LSPR-分子振动耦合的各种因素,并为传感或 SEIRA 衬底的设计提供了基础。