Kang Jiho, Valenzuela Stephanie A, Lin Emily Y, Dominguez Manuel N, Sherman Zachary M, Truskett Thomas M, Anslyn Eric V, Milliron Delia J
McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E Dean Keeton St, Austin, TX 78712, USA.
Department of Chemistry, University of Texas at Austin, 2506 Speedway, Austin, TX 78712, USA.
Sci Adv. 2022 Feb 18;8(7):eabm7364. doi: 10.1126/sciadv.abm7364.
Nanocrystal gels can be responsive, tunable materials, but designing their structure and properties is challenging. By using reversibly bonded molecular linkers, gelation can be realized under conditions predicted by thermodynamics. However, simulations have offered the only microscopic insights, with no experimental means to monitor linking leading to gelation. We introduce a metal coordination linkage with a distinct optical signature allowing us to quantify linking in situ and establish structural and thermodynamic bases for assembly. Because of coupling between linked indium tin oxide nanocrystals, their infrared absorption shifts abruptly at a chemically tunable gelation temperature. We quantify bonding spectroscopically and use molecular simulation to understand temperature-dependent bonding motifs, revealing that gel formation is governed by reaching a critical number of effective links that extend the nanocrystal network. Microscopic insights from our colorimetric linking chemistry enable switchable gels based on thermodynamic principles, opening the door to rational design of programmable nanocrystal networks.
纳米晶体凝胶可以是响应性、可调谐的材料,但设计它们的结构和性质具有挑战性。通过使用可逆键合的分子连接体,可以在热力学预测的条件下实现凝胶化。然而,模拟提供了唯一的微观见解,没有实验手段来监测导致凝胶化的连接过程。我们引入了一种具有独特光学特征的金属配位连接体,使我们能够原位量化连接,并建立组装的结构和热力学基础。由于连接的铟锡氧化物纳米晶体之间的耦合,它们的红外吸收在化学可调的凝胶化温度下会突然发生变化。我们通过光谱法对键合进行量化,并使用分子模拟来理解温度依赖性的键合模式,揭示凝胶形成是由达到扩展纳米晶体网络的关键有效连接数所控制的。我们的比色连接化学所提供的微观见解使得基于热力学原理的可切换凝胶成为可能,为可编程纳米晶体网络的合理设计打开了大门。