Suppr超能文献

一种用于验证骨骼肌弥散张量成像的三维组织打印方法。

A 3D Tissue-Printing Approach for Validation of Diffusion Tensor Imaging in Skeletal Muscle.

机构信息

1 Department of Bioengineering, University of California San Diego , La Jolla, California.

2 Department of Nanoengineering, University of California San Diego , La Jolla, California.

出版信息

Tissue Eng Part A. 2017 Sep;23(17-18):980-988. doi: 10.1089/ten.tea.2016.0438. Epub 2017 Mar 24.

Abstract

The ability to noninvasively assess skeletal muscle microstructure, which predicts function and disease, would be of significant clinical value. One method that holds this promise is diffusion tensor magnetic resonance imaging (DT-MRI), which is sensitive to the microscopic diffusion of water within tissues and has become ubiquitous in neuroimaging as a way of assessing neuronal structure and damage. However, its application to the assessment of changes in muscle microstructure associated with injury, pathology, or age remains poorly defined, because it is difficult to precisely control muscle microstructural features in vivo. However, recent advances in additive manufacturing technologies allow precision-engineered diffusion phantoms with histology informed skeletal muscle geometry to be manufactured. Therefore, the goal of this study was to develop skeletal muscle phantoms at relevant size scales to relate microstructural features to MRI-based diffusion measurements. A digital light projection based rapid 3D printing method was used to fabricate polyethylene glycol diacrylate based diffusion phantoms with (1) idealized muscle geometry (no geometry; fiber sizes of 30, 50, or 70 μm or fiber size of 50 μm with 40% of walls randomly deleted) or (2) histology-based geometry (normal and after 30-days of denervation) containing 20% or 50% phosphate-buffered saline (PBS). Mean absolute percent error (8%) of the printed phantoms indicated high conformity to templates when "fibers" were >50 μm. A multiple spin-echo echo planar imaging diffusion sequence, capable of acquiring diffusion weighted data at several echo times, was used in an attempt to combine relaxometry and diffusion techniques with the goal of separating intracellular and extracellular diffusion signals. When fiber size increased (30-70 μm) in the 20% PBS phantom, fractional anisotropy (FA) decreased (0.32-0.26) and mean diffusivity (MD) increased (0.44 × 10 mm/s-0.70 × 10 mm/s). Similarly, when fiber size increased from 30 to 70 μm in the 50% PBS diffusion phantoms, a small change in FA was observed (0.18-0.22), but MD increased from 0.86 × 10 mm/s to 1.79 × 10 mm/s. This study demonstrates a novel application of tissue engineering to understand complex diffusion signals in skeletal muscle. Through this work, we have also demonstrated the feasibility of 3D printing for skeletal muscle with relevant matrix geometries and physiologically relevant tissue characteristics.

摘要

非侵入性评估骨骼肌肉微观结构的能力可以预测功能和疾病,这将具有重要的临床价值。一种有希望的方法是扩散张量磁共振成像(DT-MRI),它对组织内水分子的微观扩散敏感,并且已经在神经影像学中广泛用于评估神经元结构和损伤。然而,它在评估与损伤、病理或年龄相关的肌肉微观结构变化方面的应用仍然定义不明确,因为很难在体内精确控制肌肉微观结构特征。然而,最近的添加剂制造技术的进步使得能够制造具有组织学信息的骨骼肌肉几何形状的精密设计扩散体模。因此,本研究的目的是开发相关尺寸比例的骨骼肌肉体模,将微观结构特征与基于 MRI 的扩散测量联系起来。使用基于数字光投影的快速 3D 打印方法制造聚乙二醇二丙烯酸酯基扩散体模,具有 (1) 理想化的肌肉几何形状(无几何形状;纤维尺寸为 30、50 或 70μm 或纤维尺寸为 50μm,随机删除 40%的壁)或 (2) 组织学几何形状(正常和神经切断后 30 天),包含 20%或 50%的磷酸盐缓冲盐水(PBS)。当“纤维”大于 50μm 时,打印体模的平均绝对百分比误差(8%)表明与模板高度一致。使用多个自旋回波回波平面成像扩散序列,能够在多个回波时间采集扩散加权数据,试图将弛豫测量和扩散技术结合起来,以分离细胞内和细胞外扩散信号。当 20% PBS 体模中的纤维尺寸增加(30-70μm)时,各向异性分数(FA)降低(0.32-0.26),平均扩散系数(MD)增加(0.44×10mm/s-0.70×10mm/s)。同样,当 50% PBS 扩散体模中的纤维尺寸从 30μm 增加到 70μm 时,FA 观察到微小变化(0.18-0.22),但 MD 从 0.86×10mm/s 增加到 1.79×10mm/s。本研究展示了组织工程在理解骨骼肌肉复杂扩散信号方面的新应用。通过这项工作,我们还证明了 3D 打印用于具有相关基质几何形状和生理相关组织特征的骨骼肌肉的可行性。

相似文献

1
A 3D Tissue-Printing Approach for Validation of Diffusion Tensor Imaging in Skeletal Muscle.
Tissue Eng Part A. 2017 Sep;23(17-18):980-988. doi: 10.1089/ten.tea.2016.0438. Epub 2017 Mar 24.
2
Relationships between tissue microstructure and the diffusion tensor in simulated skeletal muscle.
Magn Reson Med. 2018 Jul;80(1):317-329. doi: 10.1002/mrm.26993. Epub 2017 Oct 31.
4
Comparison of Glass Capillary Plates and Polyethylene Fiber Bundles as Phantoms to Assess the Quality of Diffusion Tensor Imaging.
Magn Reson Med Sci. 2018 Jul 10;17(3):251-258. doi: 10.2463/mrms.mp.2017-0079. Epub 2017 Dec 5.
7
Double pulsed field gradient diffusion MRI to assess skeletal muscle microstructure.
Magn Reson Med. 2023 Oct;90(4):1582-1593. doi: 10.1002/mrm.29751. Epub 2023 Jul 1.
8
Spin echo versus stimulated echo diffusion tensor imaging of the in vivo human heart.
Magn Reson Med. 2016 Sep;76(3):862-72. doi: 10.1002/mrm.25998. Epub 2015 Oct 7.
9
3D Cell Printing of Functional Skeletal Muscle Constructs Using Skeletal Muscle-Derived Bioink.
Adv Healthc Mater. 2016 Oct;5(20):2636-2645. doi: 10.1002/adhm.201600483. Epub 2016 Aug 16.

引用本文的文献

1
3D vector field-guided toolpathing for 3D bioprinting.
Commun Eng. 2025 Aug 14;4(1):154. doi: 10.1038/s44172-025-00489-0.
4
From Voxels to Physiology: A Review of Diffusion Magnetic Resonance Imaging Applications in Skeletal Muscle.
J Magn Reson Imaging. 2025 Feb;61(2):595-615. doi: 10.1002/jmri.29489. Epub 2024 Jun 20.
5
Double pulsed field gradient diffusion MRI to assess skeletal muscle microstructure.
Magn Reson Med. 2023 Oct;90(4):1582-1593. doi: 10.1002/mrm.29751. Epub 2023 Jul 1.
8
Exercise-induced muscle damage: mechanism, assessment and nutritional factors to accelerate recovery.
Eur J Appl Physiol. 2021 Apr;121(4):969-992. doi: 10.1007/s00421-020-04566-4. Epub 2021 Jan 8.
10
High-fidelity 3D Printing using Flashing Photopolymerization.
Addit Manuf. 2019 Dec;30. doi: 10.1016/j.addma.2019.100834. Epub 2019 Aug 19.

本文引用的文献

1
Continuous Optical 3D Printing of Green Aliphatic Polyurethanes.
ACS Appl Mater Interfaces. 2017 Jan 11;9(1):836-844. doi: 10.1021/acsami.6b12500. Epub 2016 Dec 20.
2
3D printing of functional biomaterials for tissue engineering.
Curr Opin Biotechnol. 2016 Aug;40:103-112. doi: 10.1016/j.copbio.2016.03.014. Epub 2016 Apr 1.
3
Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting.
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):2206-11. doi: 10.1073/pnas.1524510113. Epub 2016 Feb 8.
4
Evaluation of skeletal muscle DTI in patients with duchenne muscular dystrophy.
NMR Biomed. 2015 Nov;28(11):1589-97. doi: 10.1002/nbm.3427. Epub 2015 Oct 9.
5
Techniques and applications of skeletal muscle diffusion tensor imaging: A review.
J Magn Reson Imaging. 2016 Apr;43(4):773-88. doi: 10.1002/jmri.25016. Epub 2015 Jul 29.
6
3D-Printed Artificial Microfish.
Adv Mater. 2015 Aug;27(30):4411-4417. doi: 10.1002/adma.201501372. Epub 2015 Jun 29.
7
Muscle changes detected with diffusion-tensor imaging after long-distance running.
Radiology. 2015 Feb;274(2):548-62. doi: 10.1148/radiol.14140702. Epub 2014 Oct 3.
8
3D optical printing of piezoelectric nanoparticle-polymer composite materials.
ACS Nano. 2014 Oct 28;8(10):9799-806. doi: 10.1021/nn503268f. Epub 2014 Jul 29.
9
Bio-inspired detoxification using 3D-printed hydrogel nanocomposites.
Nat Commun. 2014 May 8;5:3774. doi: 10.1038/ncomms4774.
10
Multi-parametric MRI characterization of inflammation in murine skeletal muscle.
NMR Biomed. 2014 Jun;27(6):716-25. doi: 10.1002/nbm.3113. Epub 2014 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验