Suppr超能文献

使用闪光光聚合的高保真3D打印

High-fidelity 3D Printing using Flashing Photopolymerization.

作者信息

You Shangting, Wang Pengrui, Schimelman Jacob, Hwang Henry H, Chen Shaochen

机构信息

Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA.

Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA.

出版信息

Addit Manuf. 2019 Dec;30. doi: 10.1016/j.addma.2019.100834. Epub 2019 Aug 19.

Abstract

Photopolymerization-based 3D printing has emerged as a promising technique to fabricate 3D structures. However, during the printing process, polymerized materials such as hydrogels often become highly light-scattering, thus perturbing incident light distribution and thereby deteriorating the final print resolution. To overcome this scattering-induced resolution deterioration, we developed a novel method termed flashing photopolymerization (FPP). Our FPP approach is informed by the fundamental kinetics of photopolymerization reactions, where light exposure is delivered in millisecond-scale 'flashes', as opposed to continuous light exposure. During the period of flash exposure, the prepolymer material negligibly scatters light. The material then polymerizes and opacifies in absence of light, therefore the exposure pattern is not perturbed by scattering. Compared to the conventional use of a continuous wave (CW) light source, the FPP fabrication resolution is improved. FPP also shows little dependency on the exposure, thus minimizing trial-and-error type optimization. Using FPP, we demonstrate its use in generating high-fidelity 3D printed constructs.

摘要

基于光聚合的3D打印已成为一种用于制造3D结构的很有前景的技术。然而,在打印过程中,诸如水凝胶之类的聚合材料常常会变得具有很强的光散射性,从而干扰入射光分布,进而降低最终的打印分辨率。为了克服这种由散射导致的分辨率下降问题,我们开发了一种名为闪光光聚合(FPP)的新方法。我们的FPP方法是基于光聚合反应的基本动力学原理,即光照以毫秒级的“闪光”形式提供,而不是连续光照。在闪光曝光期间,预聚物材料的光散射可以忽略不计。然后材料在无光的情况下聚合并变得不透明,因此曝光图案不会受到散射的干扰。与传统使用连续波(CW)光源相比,FPP的制造分辨率得到了提高。FPP对曝光的依赖性也很小,从而将试错式优化降至最低。通过使用FPP,我们展示了其在生成高保真3D打印结构中的应用。

相似文献

1
High-fidelity 3D Printing using Flashing Photopolymerization.使用闪光光聚合的高保真3D打印
Addit Manuf. 2019 Dec;30. doi: 10.1016/j.addma.2019.100834. Epub 2019 Aug 19.
4
3D printing preview for stereo-lithography based on photopolymerization kinetic models.基于光聚合动力学模型的立体光刻3D打印预览
Bioact Mater. 2020 Jun 22;5(4):798-807. doi: 10.1016/j.bioactmat.2020.05.006. eCollection 2020 Dec.

引用本文的文献

1
Light-based vat-polymerization bioprinting.基于光的光固化生物打印
Nat Rev Methods Primers. 2023;3. doi: 10.1038/s43586-023-00231-0. Epub 2023 Jun 22.
2
Advanced cell-adaptable hydrogels for bioprinting.用于生物打印的先进细胞适应性水凝胶
Bioact Mater. 2025 Aug 6;53:831-854. doi: 10.1016/j.bioactmat.2025.07.044. eCollection 2025 Nov.
6
Biomaterial-based 3D modeling of glioblastoma multiforme.基于生物材料的多形性胶质母细胞瘤3D建模。
Cancer Pathog Ther. 2023 Jan 9;1(3):177-194. doi: 10.1016/j.cpt.2023.01.002. eCollection 2023 Jul.

本文引用的文献

1
Rapid continuous 3D printing of customizable peripheral nerve guidance conduits.可定制外周神经引导导管的快速连续3D打印
Mater Today (Kidlington). 2018 Nov;21(9):951-959. doi: 10.1016/j.mattod.2018.04.001. Epub 2018 Apr 27.
2
Projection Printing of Ultrathin Structures with Nanoscale Thickness Control.具有纳米级厚度控制的超薄结构的投影印刷
ACS Appl Mater Interfaces. 2019 May 1;11(17):16059-16064. doi: 10.1021/acsami.9b02728. Epub 2019 Apr 18.
7
3D printing of functional biomaterials for tissue engineering.三维打印功能生物材料的组织工程。
Curr Opin Biotechnol. 2016 Aug;40:103-112. doi: 10.1016/j.copbio.2016.03.014. Epub 2016 Apr 1.
9
Recent advances in 3D printing of biomaterials.生物材料 3D 打印的最新进展。
J Biol Eng. 2015 Mar 1;9:4. doi: 10.1186/s13036-015-0001-4. eCollection 2015.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验