Suppr超能文献

将单中心数据驱动的生命体征参数整合到改良的儿科早期预警系统中。

Integration of Single-Center Data-Driven Vital Sign Parameters into a Modified Pediatric Early Warning System.

作者信息

Ross Catherine E, Harrysson Iliana J, Goel Veena V, Strandberg Erika J, Kan Peiyi, Franzon Deborah E, Pageler Natalie M

机构信息

1Division of Medicine Critical Care, Department of Medicine, Boston Children's Hospital, Boston, MA. 2Department of Pediatrics, Santa Clara Valley Medical Center, San Jose, CA. 3Division of Pediatric Hospital Medicine, Department of Pediatrics, Palo Alto Medical Foundation, Sutter Health, Palo Alto, CA. 4Biomedical Informatics, Stanford University School of Medicine, Stanford, CA. 5Statistical Unit, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA. 6Division of Critical Care Medicine, Department of Pediatrics, University of California, San Francisco, San Francisco, CA. 7Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA. 8Department of Clinical Informatics, Stanford Children's Health, Stanford, CA. 9Division of Systems Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA.

出版信息

Pediatr Crit Care Med. 2017 May;18(5):469-476. doi: 10.1097/PCC.0000000000001150.

Abstract

OBJECTIVES

Pediatric early warning systems using expert-derived vital sign parameters demonstrate limited sensitivity and specificity in identifying deterioration. We hypothesized that modified tools using data-driven vital sign parameters would improve the performance of a validated tool.

DESIGN

Retrospective case control.

SETTING

Quaternary-care children's hospital.

PATIENTS

Hospitalized, noncritically ill patients less than 18 years old. Cases were defined as patients who experienced an emergent transfer to an ICU or out-of-ICU cardiac arrest. Controls were patients who never required intensive care. Cases and controls were split into training and testing groups.

INTERVENTIONS

The Bedside Pediatric Early Warning System was modified by integrating data-driven heart rate and respiratory rate parameters (modified Bedside Pediatric Early Warning System 1 and 2). Modified Bedside Pediatric Early Warning System 1 used the 10th and 90th percentiles as normal parameters, whereas modified Bedside Pediatric Early Warning System 2 used fifth and 95th percentiles.

MEASUREMENTS AND MAIN RESULTS

The training set consisted of 358 case events and 1,830 controls; the testing set had 331 case events and 1,215 controls. In the sensitivity analysis, 207 of the 331 testing set cases (62.5%) were predicted by the original tool versus 206 (62.2%; p = 0.54) with modified Bedside Pediatric Early Warning System 1 and 191 (57.7%; p < 0.001) with modified Bedside Pediatric Early Warning System 2. For specificity, 1,005 of the 1,215 testing set control patients (82.7%) were identified by original Bedside Pediatric Early Warning System versus 1,013 (83.1%; p = 0.54) with modified Bedside Pediatric Early Warning System 1 and 1,055 (86.8%; p < 0.001) with modified Bedside Pediatric Early Warning System 2. There was no net gain in sensitivity and specificity using either of the modified Bedside Pediatric Early Warning System tools.

CONCLUSIONS

Integration of data-driven vital sign parameters into a validated pediatric early warning system did not significantly impact sensitivity or specificity, and all the tools showed lower than desired sensitivity and specificity at a single cutoff point. Future work is needed to develop an objective tool that can more accurately predict pediatric decompensation.

摘要

目的

使用专家得出的生命体征参数的儿科早期预警系统在识别病情恶化方面显示出有限的敏感性和特异性。我们假设使用数据驱动的生命体征参数的改良工具将提高经过验证的工具的性能。

设计

回顾性病例对照研究。

地点

四级护理儿童医院。

患者

18岁以下住院的非危重症患者。病例定义为紧急转至重症监护病房(ICU)或发生ICU外心脏骤停的患者。对照为从未需要重症监护的患者。病例和对照被分为训练组和测试组。

干预措施

通过整合数据驱动的心率和呼吸频率参数对床边儿科早期预警系统进行改良(改良床边儿科早期预警系统1和2)。改良床边儿科早期预警系统1使用第10和第90百分位数作为正常参数,而改良床边儿科早期预警系统2使用第5和第95百分位数。

测量指标和主要结果

训练集包括358例病例事件和1830例对照;测试集有331例病例事件和1215例对照。在敏感性分析中,原始工具预测了331例测试集病例中的207例(62.5%),改良床边儿科早期预警系统1预测了206例(62.2%;p = 0.54),改良床边儿科早期预警系统2预测了191例(57.7%;p < 0.001)。对于特异性,原始床边儿科早期预警系统识别出1215例测试集对照患者中的1005例(82.7%),改良床边儿科早期预警系统1识别出1013例(83.1%;p = 0.54),改良床边儿科早期预警系统2识别出1055例(86.8%;p < 0.001)。使用任何一种改良床边儿科早期预警系统工具,敏感性和特异性均无净增益。

结论

将数据驱动的生命体征参数整合到经过验证的儿科早期预警系统中对敏感性或特异性没有显著影响,并且所有工具在单一临界值时均显示出低于预期的敏感性和特异性。未来需要开展工作来开发一种能够更准确预测儿科失代偿的客观工具。

相似文献

1
Integration of Single-Center Data-Driven Vital Sign Parameters into a Modified Pediatric Early Warning System.
Pediatr Crit Care Med. 2017 May;18(5):469-476. doi: 10.1097/PCC.0000000000001150.
3
Evaluation of a Pediatric Early Warning Score Across Different Subspecialty Patients.
Pediatr Crit Care Med. 2017 Jul;18(7):655-660. doi: 10.1097/PCC.0000000000001176.
6
Derivation of a cardiac arrest prediction model using ward vital signs*.
Crit Care Med. 2012 Jul;40(7):2102-8. doi: 10.1097/CCM.0b013e318250aa5a.
7
Recognizing critically ill children with a modified pediatric early warning score at the emergency department, a feasibility study.
Eur J Pediatr. 2019 Feb;178(2):229-234. doi: 10.1007/s00431-018-3285-9. Epub 2018 Nov 9.
8
Validation of the Children's Hospital Early Warning System for Critical Deterioration Recognition.
J Pediatr Nurs. 2017 Jan-Feb;32:52-58. doi: 10.1016/j.pedn.2016.10.005. Epub 2016 Nov 5.
9
Risk stratification to improve Pediatric Early Warning Systems: it is all about the context.
Eur J Pediatr. 2019 Oct;178(10):1589-1596. doi: 10.1007/s00431-019-03446-0. Epub 2019 Sep 4.
10
Accuracy of Bedside Paediatric Early Warning System (BedsidePEWS) in a Pediatric Stem Cell Transplant Unit.
J Pediatr Oncol Nurs. 2016 Jul;33(4):249-56. doi: 10.1177/1043454215600154. Epub 2015 Oct 24.

本文引用的文献

1
Safety analysis of proposed data-driven physiologic alarm parameters for hospitalized children.
J Hosp Med. 2016 Dec;11(12):817-823. doi: 10.1002/jhm.2635. Epub 2016 Jul 14.
4
Use of a modified pediatric early warning score in a department of pediatric and adolescent medicine.
PLoS One. 2013 Aug 26;8(8):e72534. doi: 10.1371/journal.pone.0072534. eCollection 2013.
6
Development and validation of a continuous measure of patient condition using the Electronic Medical Record.
J Biomed Inform. 2013 Oct;46(5):837-48. doi: 10.1016/j.jbi.2013.06.011. Epub 2013 Jul 3.
8
Development of heart and respiratory rate percentile curves for hospitalized children.
Pediatrics. 2013 Apr;131(4):e1150-7. doi: 10.1542/peds.2012-2443. Epub 2013 Mar 11.
9
Comparison of three acute care pediatric early warning scoring tools.
J Pediatr Nurs. 2013 Nov-Dec;28(6):e33-41. doi: 10.1016/j.pedn.2012.12.002. Epub 2012 Dec 28.
10
The Cardiac Children's Hospital Early Warning Score (C-CHEWS).
J Pediatr Nurs. 2013 Apr;28(2):171-8. doi: 10.1016/j.pedn.2012.07.009. Epub 2012 Aug 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验