Suppr超能文献

在一家三级儿童医院中,评估电子病历生命体征数据与一种市售 acuity 评分在预测重症干预需求方面的作用。

Evaluation of Electronic Medical Record Vital Sign Data Versus a Commercially Available Acuity Score in Predicting Need for Critical Intervention at a Tertiary Children's Hospital.

作者信息

da Silva Yong Sing, Hamilton Melinda Fiedor, Horvat Christopher, Fink Ericka L, Palmer Fereshteh, Nowalk Andrew J, Winger Daniel G, Clark Robert S B

机构信息

1Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA. 2Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA. 3Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA. 4Safar Center for Resuscitation Research, Pittsburgh, PA. 5Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA.

出版信息

Pediatr Crit Care Med. 2015 Sep;16(7):644-51. doi: 10.1097/PCC.0000000000000444.

Abstract

OBJECTIVES

Evaluate the ability of vital sign data versus a commercially available acuity score adapted for children (pediatric Rothman Index) to predict need for critical intervention in hospitalized pediatric patients to form the foundation for an automated early warning system.

DESIGN

Retrospective review of electronic medical record data.

SETTING

Academic children's hospital.

PATIENTS

A total of 220 hospitalized children 6.7 ± 6.7 years old experiencing a cardiopulmonary arrest (condition A) and/or requiring urgent intervention with transfer (condition C) to the ICU between January 2006 and July 2011.

INTERVENTIONS

None.

MEASUREMENTS AND MAIN RESULTS

Physiologic data 24 hours preceding the event were extracted from the electronic medical record. Vital sign predictors were constructed using combinations of age-adjusted abnormalities in heart rate, systolic and diastolic blood pressures, respiratory rate, and peripheral oxygen saturation to predict impending deterioration. Sensitivity and specificity were determined for vital sign-based predictors by using 1:1 age-matched and sex-matched non-ICU control patients. Sensitivity and specificity for a model consisting of any two vital sign measurements simultaneously outside of age-adjusted normal ranges for condition A, condition C, and condition A or C were 64% and 54%, 57% and 53%, and 59% and 54%, respectively. The pediatric Rothman Index (added to the electronic medical record in April 2009) was evaluated in a subset of these patients (n = 131) and 16,138 hospitalized unmatched non-ICU control patients for the ability to predict condition A or C, and receiver operating characteristic curves were generated. Sensitivity and specificity for a pediatric Rothman Index cutoff of 40 for condition A, condition C, and condition A or C were 56% and 99%, 13% and 99%, and 28% and 99%, respectively.

CONCLUSIONS

A model consisting of simultaneous vital sign abnormalities and the pediatric Rothman Index predict condition A or C in the 24-hour period prior to the event. Vital sign only prediction models have higher sensitivity than the pediatric Rothman Index but are associated with a high false-positive rate. The high specificity of the pediatric Rothman Index merits prospective evaluation as an electronic adjunct to human-triggered early warning systems.

摘要

目的

评估生命体征数据与一种适用于儿童的商业可用急症评分(儿科罗斯曼指数)预测住院儿科患者是否需要进行关键干预的能力,以此为自动预警系统奠定基础。

设计

对电子病历数据进行回顾性分析。

地点

学术性儿童医院。

患者

2006年1月至2011年7月期间,共有220名6.7±6.7岁的住院儿童经历了心肺骤停(A组情况)和/或需要紧急干预并转入重症监护病房(C组情况)。

干预措施

无。

测量指标及主要结果

从电子病历中提取事件发生前24小时的生理数据。通过结合年龄调整后的心率、收缩压和舒张压、呼吸频率及外周血氧饱和度异常情况构建生命体征预测指标,以预测即将出现的病情恶化。通过使用年龄和性别匹配的非重症监护病房对照患者,确定基于生命体征的预测指标的敏感性和特异性。对于由任何两项生命体征测量值同时超出A组情况、C组情况以及A组或C组情况的年龄调整正常范围所组成的模型,其敏感性和特异性分别为64%和54%、57%和53%、59%和54%。在这些患者的一个亚组(n = 131)以及16138名未匹配的住院非重症监护病房对照患者中评估儿科罗斯曼指数(2009年4月添加到电子病历中)预测A组或C组情况的能力,并生成受试者工作特征曲线。对于A组情况、C组情况以及A组或C组情况,儿科罗斯曼指数临界值为40时的敏感性和特异性分别为56%和99%、13%和99%、28%和99%。

结论

由生命体征异常情况和儿科罗斯曼指数组成的模型可在事件发生前24小时内预测A组或C组情况。仅基于生命体征的预测模型比儿科罗斯曼指数具有更高的敏感性,但假阳性率较高。儿科罗斯曼指数的高特异性值得作为人工触发预警系统的电子辅助手段进行前瞻性评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验