Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences , POB 49, Budapest H-1525, Hungary.
Racah Institute of Physics, The Hebrew University of Jerusalem , Givat Ram Jerusalem 91904, Israel.
Nano Lett. 2017 Apr 12;17(4):2294-2298. doi: 10.1021/acs.nanolett.6b05023. Epub 2017 Mar 28.
The nitrogen-vacancy (NV) center in diamond has shown great promise of nanoscale sensing applications, however, near-surface NV suffer from relatively short spin coherence time that limits its sensitivity. This is presumably caused by improper surface termination. Using first-principles calculations, we propose that nitrogen-terminated (111) diamond provides electrical inactivity and surface spin noise free properties. We anticipate that the nitrogen-terminated (111) surface can be fabricated by nitrogen plasma treatment. Our findings pave the way toward an improved NV-based quantum sensing and quantum simulation operating at room temperature.
金刚石中的氮空位(NV)中心在纳米尺度传感应用方面显示出巨大的潜力,然而,近表面 NV 由于自旋相干时间相对较短而限制了其灵敏度。这大概是由于表面终止不当造成的。通过第一性原理计算,我们提出氮终止的(111)金刚石具有电惰性和无表面自旋噪声的特性。我们预计,氮终止的(111)表面可以通过氮等离子体处理来制备。我们的发现为在室温下进行基于 NV 的量子传感和量子模拟铺平了道路。