Jaffe Tzach, Attrash Mohammed, Kuntumalla Mohan Kumar, Akhvlediani Roza, Michaelson Shaul, Gal Lior, Felgen Nina, Fischer Miri, Reithmaier Johann Peter, Popov Cyril, Hoffman Alon, Orenstein Meir
Andrew and Erna Viterbi Department of Electrical Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel.
Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, 32000 Haifa, Israel.
Nano Lett. 2020 May 13;20(5):3192-3198. doi: 10.1021/acs.nanolett.9b05243. Epub 2020 May 1.
We introduce and demonstrate a new approach for nitrogen-vacancy (NV) patterning in diamond, achieving a deterministic, nanometer-thin, and dense delta-doped layer of negatively charged NV centers in diamond. We employed a pure nitridation stage using microwave plasma and a subsequent diamond overgrowth. We present the highest reported nitrogen concentration in a delta-doped layer (1.8 × 10 cm) while maintaining the pristine diamond crystal quality. This result combined with the large optically detected magnetic resonance contrast can pave the way toward highly sensitive NV-based magnetometers. We further employed this delta-doping technique on high-quality fabricated diamond nanostructures for realizing a topographic NV patterning in order to enhance the sensing and hyperpolarization capabilities of NV-based devices.
我们介绍并展示了一种用于在金刚石中进行氮空位(NV)图案化的新方法,实现了在金刚石中形成具有确定性、纳米级薄且密集的带负电荷NV中心的δ掺杂层。我们采用了一个使用微波等离子体的纯氮化阶段以及随后的金刚石外延生长。我们展示了δ掺杂层中报告的最高氮浓度(1.8×10¹⁹cm⁻³),同时保持了原始金刚石晶体的质量。这一结果与大的光学检测磁共振对比度相结合,可以为基于NV的高灵敏度磁力计铺平道路。我们进一步将这种δ掺杂技术应用于高质量制造的金刚石纳米结构,以实现形貌NV图案化,从而增强基于NV的器件的传感和超极化能力。