Ekuma C E, Dobrosavljević V, Gunlycke D
National Research Council Research Associate at the Naval Research Laboratory, Washington, DC 20375, USA.
Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, USA.
Phys Rev Lett. 2017 Mar 10;118(10):106404. doi: 10.1103/PhysRevLett.118.106404.
We present a first-principles-based many-body typical medium dynamical cluster approximation and density function theory method for characterizing electron localization in disordered structures. This method applied to monolayer hexagonal boron nitride shows that the presence of boron vacancies could turn this wide-gap insulator into a correlated metal. Depending on the strength of the electron interactions, these calculations suggest that conduction could be obtained at a boron vacancy concentration as low as 1.0%. We also explore the distribution of the local density of states, a fingerprint of spatial variations, which allows localized and delocalized states to be distinguished. The presented method enables the study of disorder-driven insulator-metal transitions not only in h-BN but also in other physical materials.
我们提出了一种基于第一性原理的多体典型介质动力学团簇近似和密度泛函理论方法,用于表征无序结构中的电子局域化。将该方法应用于单层六方氮化硼表明,硼空位的存在可使这种宽带隙绝缘体转变为关联金属。根据电子相互作用的强度,这些计算表明,在硼空位浓度低至1.0%时即可实现导电。我们还探索了局域态密度的分布,这是空间变化的一个特征,可用于区分局域态和离域态。所提出的方法不仅能够研究h-BN中由无序驱动的绝缘体-金属转变,还能研究其他物理材料中的此类转变。