Suppr超能文献

作为计算机分层摄影术中图像重建基函数的球对称体积元。

Spherically symmetric volume elements as basis functions for image reconstructions in computed laminography.

作者信息

Trampert Patrick, Vogelgesang Jonas, Schorr Christian, Maisl Michael, Bogachev Sviatoslav, Marniok Nico, Louis Alfred, Dahmen Tim, Slusallek Philipp

机构信息

German Research Center for Artificial Intelligence GmbH (DFKI), Saarbrücken, Germany.

Saarland University, Saarbrücken, Germany.

出版信息

J Xray Sci Technol. 2017;25(4):533-546. doi: 10.3233/XST-16230.

Abstract

BACKGROUND

Laminography is a tomographic technique that allows three-dimensional imaging of flat, elongated objects that stretch beyond the extent of a reconstruction volume. Laminography datasets can be reconstructed using iterative algorithms based on the Kaczmarz method.

OBJECTIVE

The goal of this study is to develop a reconstruction algorithm that provides superior reconstruction quality for a challenging class of problems.

METHODS

Images are represented in computer memory using coefficients over basis functions, typically piecewise constant functions (voxels). By replacing voxels with spherically symmetric volume elements (blobs) based on generalized Kaiser-Bessel window functions, we obtained an adapted version of the algebraic reconstruction technique.

RESULTS

Band-limiting properties of blob functions are beneficial particular in the case of noisy projections and if only a limited number of projections is available. In this case, using blob basis functions improved the full-width-at-half-maximum resolution from 10.2±1.0 to 9.9±0.9 (p value = 2.3·10-4). For the same dataset, the signal-to-noise ratio improved from 16.1 to 31.0. The increased computational demand per iteration is compensated for by a faster convergence rate, such that the overall performance is approximately identical for blobs and voxels.

CONCLUSIONS

Despite the higher complexity, tomographic reconstruction from computed laminography data should be implemented using blob basis functions, especially if noisy data is expected.

摘要

背景

层析X线照相术是一种断层扫描技术,可对超出重建体积范围的扁平细长物体进行三维成像。层析X线照相术数据集可使用基于卡兹马尔兹方法的迭代算法进行重建。

目的

本研究的目的是开发一种重建算法,为一类具有挑战性的问题提供卓越的重建质量。

方法

图像在计算机内存中使用基函数上的系数表示,通常是分段常数函数(体素)。通过基于广义凯泽-贝塞尔窗函数用球对称体积元素(斑点)替换体素,我们获得了代数重建技术的改进版本。

结果

斑点函数的带限特性特别有利于处理有噪声的投影情况以及投影数量有限的情况。在这种情况下,使用斑点基函数将半高宽分辨率从10.2±1.0提高到9.9±0.9(p值=2.3·10-4)。对于相同的数据集,信噪比从16.1提高到31.0。每次迭代增加的计算需求通过更快的收敛速度得到补偿,使得斑点和体素的整体性能大致相同。

结论

尽管复杂度更高,但计算机层析X线照相术数据的断层重建应使用斑点基函数来实现,特别是在预期数据有噪声的情况下。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验