Suppr超能文献

脑 H MRSI 中快速脂质重建和去除处理的方法。

Method for fast lipid reconstruction and removal processing in H MRSI of the brain.

机构信息

Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, USA.

Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA.

出版信息

Magn Reson Med. 2021 Dec;86(6):2930-2944. doi: 10.1002/mrm.28949. Epub 2021 Aug 2.

Abstract

PURPOSE

To develop a new rapid spatial filtering method for lipid removal, fast lipid reconstruction and removal processing (FLIP), which selectively isolates and removes interfering lipid signals from outside the brain in a full-FOV 2D MRSI and whole-brain 3D echo planar spectroscopic imaging (EPSI).

THEORY AND METHODS

FLIP uses regularized least-squares regression based on spatial prior information from MRI to selectively remove lipid signals originating from the scalp and measure the brain metabolite signals with minimum cross contamination. FLIP is a noniterative approach, thus allowing a rapid processing speed, and uses only spatial information without any spectral priors. The performance of FLIP was compared with the Papoulis-Gerchberg algorithm (PGA), Hankel singular value decomposition (HSVD), and fast image reconstruction with L2 regularization (L2).

RESULTS

FLIP in both 2D and 3D MRSI resulted in consistent metabolite quantification in a greater number of voxels with less concentration variation than other algorithms, demonstrating effective and robust lipid-removal performance. The percentage of voxels that met quality criteria with FLIP, PGA, HSVD, and L2 processing were 90%, 57%, 29%, and 42% in 2D MRSI, and 80%, 75%, 76%, and 74% in 3D EPSI, respectively. The quantification results of full-FOV MRSI using FLIP were comparable to those of volume-localized MRSI, while allowing significantly increased spatial coverage. FLIP performed the fastest in 2D MRSI.

CONCLUSION

FLIP is a new lipid-removal algorithm that promises fast and effective lipid removal with improved volume coverage in MRSI.

摘要

目的

开发一种新的快速空间滤波方法用于脂质去除,即快速脂质重建和去除处理(FLIP),该方法可选择性地从全视野 2D MRSI 和全脑 3D 回波平面波谱成像(EPSI)中的脑外隔离和去除干扰脂质信号。

理论和方法

FLIP 使用基于 MRI 空间先验信息的正则化最小二乘回归,选择性地去除来自头皮的脂质信号,并以最小的交叉污染测量脑代谢物信号。FLIP 是一种非迭代方法,因此允许快速处理速度,并且仅使用空间信息而不使用任何谱先验。比较了 FLIP 与 Papoulis-Gerchberg 算法(PGA)、Hankel 奇异值分解(HSVD)和具有 L2 正则化的快速图像重建(L2)的性能。

结果

FLIP 在 2D 和 3D MRSI 中均能在更多体素中实现一致的代谢物定量,浓度变化小于其他算法,显示出有效的稳健脂质去除性能。FLIP、PGA、HSVD 和 L2 处理的满足质量标准的体素百分比分别为 2D MRSI 中的 90%、57%、29%和 42%,3D EPSI 中的 80%、75%、76%和 74%。使用 FLIP 的全视野 MRSI 定量结果与容积定位 MRSI 相当,同时允许显著增加空间覆盖范围。FLIP 在 2D MRSI 中速度最快。

结论

FLIP 是一种新的脂质去除算法,有望在 MRSI 中实现快速有效的脂质去除,并提高容积覆盖范围。

相似文献

1
Method for fast lipid reconstruction and removal processing in H MRSI of the brain.
Magn Reson Med. 2021 Dec;86(6):2930-2944. doi: 10.1002/mrm.28949. Epub 2021 Aug 2.
4
Water removal in MR spectroscopic imaging with L2 regularization.
Magn Reson Med. 2019 Oct;82(4):1278-1287. doi: 10.1002/mrm.27824. Epub 2019 May 31.
5
High-resolution (1) H-MRSI of the brain using SPICE: Data acquisition and image reconstruction.
Magn Reson Med. 2016 Oct;76(4):1059-70. doi: 10.1002/mrm.26019. Epub 2015 Oct 28.
6
Post-acquisition water-signal removal in 3D water-unsuppressed H-MR spectroscopic imaging of the prostate.
Magn Reson Med. 2023 May;89(5):1741-1753. doi: 10.1002/mrm.29565. Epub 2022 Dec 26.
7
Reduction of lipid contamination in MR spectroscopy imaging using signal space projection.
Magn Reson Med. 2019 Mar;81(3):1486-1498. doi: 10.1002/mrm.27496. Epub 2018 Sep 11.
8
Simultaneous metabolic and functional imaging of the brain using SPICE.
Magn Reson Med. 2019 Dec;82(6):1993-2002. doi: 10.1002/mrm.27865. Epub 2019 Jul 11.
10
Accelerated 3D metabolite T mapping of the brain using variable-flip-angle SPICE.
Magn Reson Med. 2024 Oct;92(4):1310-1322. doi: 10.1002/mrm.30200. Epub 2024 Jun 24.

引用本文的文献

2
Lipid removal in deuterium metabolic imaging (DMI) using spatial prior knowledge.
Magn Reson (Gott). 2024 Apr 9;5(1):21-31. doi: 10.5194/mr-5-21-2024. eCollection 2024.

本文引用的文献

2
Methodological consensus on clinical proton MRS of the brain: Review and recommendations.
Magn Reson Med. 2019 Aug;82(2):527-550. doi: 10.1002/mrm.27742. Epub 2019 Mar 28.
3
Reduction of lipid contamination in MR spectroscopy imaging using signal space projection.
Magn Reson Med. 2019 Mar;81(3):1486-1498. doi: 10.1002/mrm.27496. Epub 2018 Sep 11.
6
Compartmentalized low-rank recovery for high-resolution lipid unsuppressed MRSI.
Magn Reson Med. 2017 Oct;78(4):1267-1280. doi: 10.1002/mrm.26537. Epub 2016 Nov 11.
7
B0-adjusted and sensitivity-encoded spectral localization by imaging (BASE-SLIM) in the human brain in vivo.
Neuroimage. 2016 Jul 1;134:355-364. doi: 10.1016/j.neuroimage.2016.04.016. Epub 2016 Apr 11.
8
High-resolution H-MRSI of the brain using short-TE SPICE.
Magn Reson Med. 2017 Feb;77(2):467-479. doi: 10.1002/mrm.26130. Epub 2016 Feb 2.
9
Removal of nuisance signals from limited and sparse 1H MRSI data using a union-of-subspaces model.
Magn Reson Med. 2016 Feb;75(2):488-97. doi: 10.1002/mrm.25635. Epub 2015 Mar 11.
10
Fast image reconstruction with L2-regularization.
J Magn Reson Imaging. 2014 Jul;40(1):181-91. doi: 10.1002/jmri.24365. Epub 2013 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验