Suppr超能文献

相似文献

3
Classifying adverse drug reactions from imbalanced twitter data.
Int J Med Inform. 2019 Sep;129:122-132. doi: 10.1016/j.ijmedinf.2019.05.017. Epub 2019 May 30.
4
Adversarial neural network with sentiment-aware attention for detecting adverse drug reactions.
J Biomed Inform. 2021 Nov;123:103896. doi: 10.1016/j.jbi.2021.103896. Epub 2021 Sep 4.
6
Pharmacovigilance with Transformers: A Framework to Detect Adverse Drug Reactions Using BERT Fine-Tuned with FARM.
Comput Math Methods Med. 2021 Aug 13;2021:5589829. doi: 10.1155/2021/5589829. eCollection 2021.
7
Detecting Adverse Drug Reactions on Twitter with Convolutional Neural Networks and Word Embedding Features.
J Healthc Inform Res. 2018 Apr 12;2(1-2):25-43. doi: 10.1007/s41666-018-0018-9. eCollection 2018 Jun.
8
Semi-Supervised Recurrent Neural Network for Adverse Drug Reaction mention extraction.
BMC Bioinformatics. 2018 Jun 13;19(Suppl 8):212. doi: 10.1186/s12859-018-2192-4.
10
Portable automatic text classification for adverse drug reaction detection via multi-corpus training.
J Biomed Inform. 2015 Feb;53:196-207. doi: 10.1016/j.jbi.2014.11.002. Epub 2014 Nov 8.

引用本文的文献

5
Intelligent health in the IS area: A literature review and research agenda.
Fundam Res. 2023 May 11;4(4):961-971. doi: 10.1016/j.fmre.2023.04.008. eCollection 2024 Jul.
6
Predicting Drugs Suspected of Causing Adverse Drug Reactions Using Graph Features and Attention Mechanisms.
Pharmaceuticals (Basel). 2024 Jun 22;17(7):822. doi: 10.3390/ph17070822.
7
Transformers and large language models in healthcare: A review.
Artif Intell Med. 2024 Aug;154:102900. doi: 10.1016/j.artmed.2024.102900. Epub 2024 Jun 5.
8
BiMPADR: A Deep Learning Framework for Predicting Adverse Drug Reactions in New Drugs.
Molecules. 2024 Apr 14;29(8):1784. doi: 10.3390/molecules29081784.
9
Real-World Data and Evidence in Lung Cancer: A Review of Recent Developments.
Cancers (Basel). 2024 Apr 4;16(7):1414. doi: 10.3390/cancers16071414.
10
Trends in using deep learning algorithms in biomedical prediction systems.
Front Neurosci. 2023 Nov 9;17:1256351. doi: 10.3389/fnins.2023.1256351. eCollection 2023.

本文引用的文献

1
Analysis of the effect of sentiment analysis on extracting adverse drug reactions from tweets and forum posts.
J Biomed Inform. 2016 Aug;62:148-58. doi: 10.1016/j.jbi.2016.06.007. Epub 2016 Jun 27.
2
MIMIC-III, a freely accessible critical care database.
Sci Data. 2016 May 24;3:160035. doi: 10.1038/sdata.2016.35.
3
SOCIAL MEDIA MINING SHARED TASK WORKSHOP.
Pac Symp Biocomput. 2016;21:581-92.
4
Pharmacovigilance on twitter? Mining tweets for adverse drug reactions.
AMIA Annu Symp Proc. 2014 Nov 14;2014:924-33. eCollection 2014.
6
Portable automatic text classification for adverse drug reaction detection via multi-corpus training.
J Biomed Inform. 2015 Feb;53:196-207. doi: 10.1016/j.jbi.2014.11.002. Epub 2014 Nov 8.
7
Digital drug safety surveillance: monitoring pharmaceutical products in twitter.
Drug Saf. 2014 May;37(5):343-50. doi: 10.1007/s40264-014-0155-x.
8
Adverse drug reactions of spontaneous reports in Shanghai pediatric population.
PLoS One. 2014 Feb 24;9(2):e89829. doi: 10.1371/journal.pone.0089829. eCollection 2014.
9
Clinical and economic burden of adverse drug reactions.
J Pharmacol Pharmacother. 2013 Dec;4(Suppl 1):S73-7. doi: 10.4103/0976-500X.120957.
10
Pharmacovigilance using clinical notes.
Clin Pharmacol Ther. 2013 Jun;93(6):547-55. doi: 10.1038/clpt.2013.47. Epub 2013 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验