Suppr超能文献

回复对“药物警戒中的深度学习:用于标记 Twitter 帖子中药物不良反应的循环神经网络架构”一文的评论。

Reply to comment on: "Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts".

机构信息

Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.

出版信息

J Am Med Inform Assoc. 2019 Jun 1;26(6):580-581. doi: 10.1093/jamia/ocy192.

Abstract

We appreciate the detailed review provided by Magge et al1 of our article, "Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts." 2 In their letter, they present a subjective criticism that rests on concerns about our dataset composition and potential misinterpretation of comparisons to existing methods. Our article underwent two rounds of extensive peer review and has been cited 28 times1 in the nearly 2 years since it was published online (February 2017). Neither the reviewers nor the citing authors raised similar concerns. There are, however, portions of the commentary that highlight areas of our work that would benefit from further clarification.

摘要

我们感谢 Magge 等人 1 对我们的文章“用于药物警戒的深度学习:用于在 Twitter 帖子中标记不良反应的循环神经网络架构”2 的详细评论。在他们的信中,他们提出了一个主观的批评,主要是基于对我们数据集组成的担忧以及对与现有方法进行比较的潜在误解。我们的文章经过两轮广泛的同行评审,自在线发表以来(2017 年 2 月)近 2 年来已被引用 28 次 1。评论者和引用作者都没有提出类似的担忧。但是,评论中有一些部分突出了我们的工作需要进一步澄清的方面。

相似文献

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验