Suppr超能文献

情感分析对从推文和论坛帖子中提取药物不良反应的效果分析。

Analysis of the effect of sentiment analysis on extracting adverse drug reactions from tweets and forum posts.

作者信息

Korkontzelos Ioannis, Nikfarjam Azadeh, Shardlow Matthew, Sarker Abeed, Ananiadou Sophia, Gonzalez Graciela H

机构信息

National Centre for Text Mining, School of Computer Science, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN Manchester, United Kingdom.

Department of Biomedical Informatics, Arizona State University, Mayo Clinic, Samuel C. Johnson Research Building, 13212 East Shea Boulevard, Scottsdale, AZ 85259, United States.

出版信息

J Biomed Inform. 2016 Aug;62:148-58. doi: 10.1016/j.jbi.2016.06.007. Epub 2016 Jun 27.

Abstract

OBJECTIVE

The abundance of text available in social media and health related forums along with the rich expression of public opinion have recently attracted the interest of the public health community to use these sources for pharmacovigilance. Based on the intuition that patients post about Adverse Drug Reactions (ADRs) expressing negative sentiments, we investigate the effect of sentiment analysis features in locating ADR mentions.

METHODS

We enrich the feature space of a state-of-the-art ADR identification method with sentiment analysis features. Using a corpus of posts from the DailyStrength forum and tweets annotated for ADR and indication mentions, we evaluate the extent to which sentiment analysis features help in locating ADR mentions and distinguishing them from indication mentions.

RESULTS

Evaluation results show that sentiment analysis features marginally improve ADR identification in tweets and health related forum posts. Adding sentiment analysis features achieved a statistically significant F-measure increase from 72.14% to 73.22% in the Twitter part of an existing corpus using its original train/test split. Using stratified 10×10-fold cross-validation, statistically significant F-measure increases were shown in the DailyStrength part of the corpus, from 79.57% to 80.14%, and in the Twitter part of the corpus, from 66.91% to 69.16%. Moreover, sentiment analysis features are shown to reduce the number of ADRs being recognized as indications.

CONCLUSION

This study shows that adding sentiment analysis features can marginally improve the performance of even a state-of-the-art ADR identification method. This improvement can be of use to pharmacovigilance practice, due to the rapidly increasing popularity of social media and health forums.

摘要

目的

社交媒体和健康相关论坛中丰富的文本信息以及公众舆论的丰富表达,最近吸引了公共卫生界的兴趣,将这些来源用于药物警戒。基于患者发布关于表达负面情绪的药物不良反应(ADR)的直觉,我们研究了情感分析特征在定位ADR提及方面的作用。

方法

我们用情感分析特征丰富了一种先进的ADR识别方法的特征空间。使用来自DailyStrength论坛的帖子语料库以及标注了ADR和适应症提及的推文,我们评估了情感分析特征在定位ADR提及并将其与适应症提及区分开来方面的帮助程度。

结果

评估结果表明,情感分析特征在推文和健康相关论坛帖子中对ADR识别有轻微改善。在现有语料库的Twitter部分使用其原始训练/测试划分,添加情感分析特征使F值从72.14%显著提高到73.22%。使用分层10×10倍交叉验证,在语料库的DailyStrength部分,F值从79.57%显著提高到80.14%;在语料库的Twitter部分,F值从66.91%显著提高到69.16%。此外,情感分析特征显示减少了被识别为适应症的ADR数量。

结论

本研究表明,添加情感分析特征即使对最先进的ADR识别方法的性能也能有轻微改善。由于社交媒体和健康论坛的迅速普及,这种改进可用于药物警戒实践。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d0a/4981644/ed0dd8f60cb2/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验