Suppr超能文献

蒺藜苜蓿品系低钾胁迫的多态响应。

Polymorphic responses of Medicago truncatula accessions to potassium deprivation.

机构信息

a Department of Bacteriology , University of Wisconsin-Madison , Madison , WI , USA.

b Department of Agronomy , University of Wisconsin-Madison , Madison , WI , USA.

出版信息

Plant Signal Behav. 2017 Apr 3;12(4):e1307494. doi: 10.1080/15592324.2017.1307494.

Abstract

Potassium (K) is an essential macronutrient for plants and the most abundant cation in cells. Due to variable K availability in the environment, plants must be able to adjust their developmental, physiological and transcriptional responses. The plant development to K deprivation was not well studied in legumes thus far. We recently described the first adaptation mechanisms of the model legume Medicago truncatula Jemalong A17 to long-term K deprivation and analyzed these responses in the context of arbuscular mycorrhizal symbiosis. Here we report polymorphic growth variations of two genetically very different accessions of M. truncatula to K-limiting conditions, Jemalong A17, and the Tunisian accession Tn11.1. The faster adaptation of Tn11.1 than A17 to K shortage might be due to its greater adaptation to saline soils. Examining in a more systematic way the developmental adaptation of various M. truncatula accessions to K deprivation will provide a better understanding of how legume evolved to cope with this stressful condition.

摘要

钾(K)是植物必需的大量营养元素,也是细胞中含量最丰富的阳离子。由于环境中钾的可用性存在差异,植物必须能够调整其发育、生理和转录反应。迄今为止,豆科植物对低钾胁迫的发育适应机制还没有得到很好的研究。我们最近描述了模式豆科植物蒺藜苜蓿 Jemalong A17 对长期低钾胁迫的第一个适应机制,并在丛枝菌根共生的背景下分析了这些反应。在这里,我们报告了两个遗传上非常不同的蒺藜苜蓿品系 Jemalong A17 和突尼斯品系 Tn11.1 在低钾条件下的生长变异的多态性。与 A17 相比,Tn11.1 对低钾的适应速度更快,这可能是由于其对盐渍土壤的适应性更强。更系统地研究不同蒺藜苜蓿品系对低钾胁迫的发育适应,将有助于更好地了解豆科植物是如何进化以应对这种胁迫条件的。

相似文献

1
Polymorphic responses of Medicago truncatula accessions to potassium deprivation.
Plant Signal Behav. 2017 Apr 3;12(4):e1307494. doi: 10.1080/15592324.2017.1307494.
2
Medicago truncatula genotypes Jemalong A17 and R108 show contrasting variations under drought stress.
Plant Physiol Biochem. 2016 Dec;109:190-198. doi: 10.1016/j.plaphy.2016.09.019. Epub 2016 Oct 1.
3
Physiological Responses and Gene Co-Expression Network of Mycorrhizal Roots under K Deprivation.
Plant Physiol. 2017 Mar;173(3):1811-1823. doi: 10.1104/pp.16.01959. Epub 2017 Feb 3.
4
Model Legumes: Functional Genomics Tools in Medicago truncatula.
Methods Mol Biol. 2018;1822:11-37. doi: 10.1007/978-1-4939-8633-0_2.
5
Mycorrhiza-mediated potassium transport in Medicago truncatula can be evaluated by using rubidium as a proxy.
Plant Sci. 2022 Sep;322:111364. doi: 10.1016/j.plantsci.2022.111364. Epub 2022 Jun 24.
6
Arbuscular mycorrhizal fungi decrease radiocesium accumulation in Medicago truncatula.
J Environ Radioact. 2010 Aug;101(8):591-6. doi: 10.1016/j.jenvrad.2010.03.004. Epub 2010 Apr 7.
7
Comparative transcriptomic analysis of salt adaptation in roots of contrasting Medicago truncatula genotypes.
Mol Plant. 2012 Sep;5(5):1068-81. doi: 10.1093/mp/sss009. Epub 2012 Mar 14.
9
Medicago truncatula ecotypes A17 and R108 differed in their response to iron deficiency.
J Plant Physiol. 2014 May 1;171(8):639-47. doi: 10.1016/j.jplph.2013.12.018. Epub 2014 Mar 21.

引用本文的文献

1
Potassium Control of Plant Functions: Ecological and Agricultural Implications.
Plants (Basel). 2021 Feb 23;10(2):419. doi: 10.3390/plants10020419.
2
Potassium in Root Growth and Development.
Plants (Basel). 2019 Oct 22;8(10):435. doi: 10.3390/plants8100435.

本文引用的文献

1
Physiological Responses and Gene Co-Expression Network of Mycorrhizal Roots under K Deprivation.
Plant Physiol. 2017 Mar;173(3):1811-1823. doi: 10.1104/pp.16.01959. Epub 2017 Feb 3.
3
The ecological genomic basis of salinity adaptation in Tunisian Medicago truncatula.
BMC Genomics. 2014 Dec 22;15(1):1160. doi: 10.1186/1471-2164-15-1160.
4
Regulation of Na(+) fluxes in plants.
Front Plant Sci. 2014 Sep 16;5:467. doi: 10.3389/fpls.2014.00467. eCollection 2014.
5
The role of mycorrhizal associations in plant potassium nutrition.
Front Plant Sci. 2014 Jul 17;5:337. doi: 10.3389/fpls.2014.00337. eCollection 2014.
6
Strategies for improving potassium use efficiency in plants.
Mol Cells. 2014 Aug;37(8):575-84. doi: 10.14348/molcells.2014.0141. Epub 2014 Jun 18.
7
The twins K+ and Na+ in plants.
J Plant Physiol. 2014 May 15;171(9):723-31. doi: 10.1016/j.jplph.2013.10.014. Epub 2014 Mar 3.
8
Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment.
J Plant Physiol. 2014 May 15;171(9):670-87. doi: 10.1016/j.jplph.2014.01.009. Epub 2014 Mar 11.
9
Potassium in agriculture--status and perspectives.
J Plant Physiol. 2014 May 15;171(9):656-69. doi: 10.1016/j.jplph.2013.08.008. Epub 2013 Oct 17.
10
Potassium transport and signaling in higher plants.
Annu Rev Plant Biol. 2013;64:451-76. doi: 10.1146/annurev-arplant-050312-120153. Epub 2013 Jan 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验