Suppr超能文献

突尼斯蒺藜苜蓿盐分适应的生态基因组基础

The ecological genomic basis of salinity adaptation in Tunisian Medicago truncatula.

作者信息

Friesen Maren L, von Wettberg Eric J B, Badri Mounawer, Moriuchi Ken S, Barhoumi Fathi, Chang Peter L, Cuellar-Ortiz Sonia, Cordeiro Matilde A, Vu Wendy T, Arraouadi Soumaya, Djébali Naceur, Zribi Kais, Badri Yazid, Porter Stephanie S, Aouani Mohammed Elarbi, Cook Douglas R, Strauss Sharon Y, Nuzhdin Sergey V

机构信息

Section of Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.

出版信息

BMC Genomics. 2014 Dec 22;15(1):1160. doi: 10.1186/1471-2164-15-1160.

Abstract

BACKGROUND

As our world becomes warmer, agriculture is increasingly impacted by rising soil salinity and understanding plant adaptation to salt stress can help enable effective crop breeding. Salt tolerance is a complex plant phenotype and we know little about the pathways utilized by naturally tolerant plants. Legumes are important species in agricultural and natural ecosystems, since they engage in symbiotic nitrogen-fixation, but are especially vulnerable to salinity stress.

RESULTS

Our studies of the model legume Medicago truncatula in field and greenhouse settings demonstrate that Tunisian populations are locally adapted to saline soils at the metapopulation level and that saline origin genotypes are less impacted by salt than non-saline origin genotypes; these populations thus likely contain adaptively diverged alleles. Whole genome resequencing of 39 wild accessions reveals ongoing migration and candidate genomic regions that assort non-randomly with soil salinity. Consistent with natural selection acting at these sites, saline alleles are typically rare in the range-wide species' gene pool and are also typically derived relative to the sister species M. littoralis. Candidate regions for adaptation contain genes that regulate physiological acclimation to salt stress, such as abscisic acid and jasmonic acid signaling, including a novel salt-tolerance candidate orthologous to the uncharacterized gene AtCIPK21. Unexpectedly, these regions also contain biotic stress genes and flowering time pathway genes. We show that flowering time is differentiated between saline and non-saline populations and may allow salt stress escape.

CONCLUSIONS

This work nominates multiple potential pathways of adaptation to naturally stressful environments in a model legume. These candidates point to the importance of both tolerance and avoidance in natural legume populations. We have uncovered several promising targets that could be used to breed for enhanced salt tolerance in crop legumes to enhance food security in an era of increasing soil salinization.

摘要

背景

随着全球气候变暖,农业越来越受到土壤盐渍化加剧的影响,了解植物对盐胁迫的适应性有助于开展有效的作物育种。耐盐性是一种复杂的植物表型,我们对天然耐盐植物所利用的途径知之甚少。豆科植物是农业和自然生态系统中的重要物种,因为它们能够进行共生固氮,但特别容易受到盐胁迫的影响。

结果

我们在田间和温室环境中对模式豆科植物蒺藜苜蓿进行的研究表明,突尼斯种群在集合种群水平上局部适应了盐渍土壤,并且盐源基因型比非盐源基因型受盐的影响更小;因此这些种群可能包含适应性分化的等位基因。对39个野生种质进行全基因组重测序,揭示了正在进行的迁移以及与土壤盐度非随机分类的候选基因组区域。与在这些位点起作用的自然选择一致,盐等位基因在全物种基因库中通常很少见,并且相对于姊妹物种海滨苜蓿通常也是衍生的。适应性候选区域包含调节对盐胁迫生理适应的基因,如脱落酸和茉莉酸信号传导相关基因,包括一个与未表征基因AtCIPK21直系同源的新型耐盐候选基因。出乎意料的是,这些区域还包含生物胁迫基因和开花时间途径基因。我们表明,盐渍和非盐渍种群之间的开花时间存在差异,这可能使植物避开盐胁迫。

结论

这项工作确定了模式豆科植物适应自然胁迫环境的多种潜在途径。这些候选基因表明了耐受性和避逆性在天然豆科植物种群中的重要性。我们发现了几个有前景的靶点,可用于培育耐盐性更强的豆科作物,以在土壤盐渍化加剧的时代增强粮食安全。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43b/4410866/c0bbcab156cd/12864_2014_6892_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验