Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.
Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
Acta Neuropathol. 2017 Sep;134(3):489-506. doi: 10.1007/s00401-017-1694-x. Epub 2017 Mar 24.
Altered proteostasis is a salient feature of Alzheimer's disease (AD), highlighting the occurrence of endoplasmic reticulum (ER) stress and abnormal protein aggregation. ER stress triggers the activation of the unfolded protein response (UPR), a signaling pathway that enforces adaptive programs to sustain proteostasis or eliminate terminally damaged cells. IRE1 is an ER-located kinase and endoribonuclease that operates as a major stress transducer, mediating both adaptive and proapoptotic programs under ER stress. IRE1 signaling controls the expression of the transcription factor XBP1, in addition to degrade several RNAs. Importantly, a polymorphism in the XBP1 promoter was suggested as a risk factor to develop AD. Here, we demonstrate a positive correlation between the progression of AD histopathology and the activation of IRE1 in human brain tissue. To define the significance of the UPR to AD, we targeted IRE1 expression in a transgenic mouse model of AD. Despite initial expectations that IRE1 signaling may protect against AD, genetic ablation of the RNase domain of IRE1 in the nervous system significantly reduced amyloid deposition, the content of amyloid β oligomers, and astrocyte activation. IRE1 deficiency fully restored the learning and memory capacity of AD mice, associated with improved synaptic function and improved long-term potentiation (LTP). At the molecular level, IRE1 deletion reduced the expression of amyloid precursor protein (APP) in cortical and hippocampal areas of AD mice. In vitro experiments demonstrated that inhibition of IRE1 downstream signaling reduces APP steady-state levels, associated with its retention at the ER followed by proteasome-mediated degradation. Our findings uncovered an unanticipated role of IRE1 in the pathogenesis of AD, offering a novel target for disease intervention.
蛋白质稳态的改变是阿尔茨海默病(AD)的一个显著特征,突出了内质网(ER)应激和异常蛋白质聚集的发生。ER 应激触发未折叠蛋白反应(UPR)的激活,这是一种信号通路,它强制适应性程序以维持蛋白质稳态或消除终末受损的细胞。IRE1 是一种位于 ER 的激酶和内切核酸酶,作为主要的应激传感器发挥作用,在 ER 应激下介导适应性和促凋亡程序。IRE1 信号控制转录因子 XBP1 的表达,此外还降解几种 RNA。重要的是,XBP1 启动子中的一个多态性被认为是发展 AD 的风险因素。在这里,我们证明了 AD 组织病理学进展与人类脑组织中 IRE1 的激活之间存在正相关。为了确定 UPR 对 AD 的意义,我们在 AD 的转基因小鼠模型中靶向 IRE1 表达。尽管最初期望 IRE1 信号可能对 AD 有保护作用,但 IRE1 神经中的核糖核酸酶结构域的基因缺失显著减少了淀粉样蛋白沉积、淀粉样β寡聚物的含量和星形胶质细胞的激活。IRE1 缺陷完全恢复了 AD 小鼠的学习和记忆能力,与改善突触功能和长时程增强(LTP)相关。在分子水平上,IRE1 缺失减少了 AD 小鼠皮质和海马区的淀粉样前体蛋白(APP)的表达。体外实验表明,IRE1 下游信号的抑制降低了 APP 的稳态水平,与它在 ER 中的保留以及随后的蛋白酶体介导的降解有关。我们的研究结果揭示了 IRE1 在 AD 发病机制中的一个意外作用,为疾病干预提供了一个新的靶点。