Suppr超能文献

综合影像分析结合分析形态学和老年评估能否预测接受胰腺手术患者的严重并发症?

Can Comprehensive Imaging Analysis with Analytic Morphomics and Geriatric Assessment Predict Serious Complications in Patients Undergoing Pancreatic Surgery?

作者信息

Benjamin Andrew J, Buschmann Mary M, Schneider Andrew, Derstine Brian A, Friedman Jeffrey F, Wang Stewart C, Dale William, Roggin Kevin K

机构信息

Department of Surgery, University of Chicago, Chicago, IL, USA.

Department of Medicine, Section of Geriatrics and Palliative Medicine, University of Chicago, Chicago, IL, USA.

出版信息

J Gastrointest Surg. 2017 Jun;21(6):1009-1016. doi: 10.1007/s11605-017-3392-3. Epub 2017 Mar 24.

Abstract

We aimed to determine whether comprehensive imaging analysis with analytic morphomics (AM) enhances or replaces geriatric assessment (GA) in risk-stratifying pancreatic surgery patients. One hundred thirty-four pancreatic surgery patients were identified from a prospective cohort. Sixty-three patients in the cohort had preoperative CT scans in addition to comprehensive geriatric assessments. CT scans were processed using AM. Associations with National Surgical Quality Improvement Program (NSQIP) serious complications were evaluated using univariate analysis and robust elastic net modeling to obtain AUROC curves by adding AM and GA measures to our previously defined clinical base risk model (age, body mass index, American Society of Anesthesiologists classification, and Charlson comorbidity index). NSQIP serious complications were associated with low psoas Hounsfield units (HUs) (p = 0.002), low-density (0 to 30 HU) psoas area (p = 0.01), visceral fat HU (p ≤ 0.001), visceral fat area (p = 0.009), subcutaneous fat HU (p = 0.023), and total body area (p = 0.012) on univariate analysis. Elastic net models incorporating the base model with geriatric assessment and psoas HU (AUC = 0.751), and AM alone (AUC = 0.739) have greater predictive value than the base model alone (AUC = 0.601). The model utilizing AM and GA in combination had the highest predictive value (AUC = 0.841). When combined, AM and GA improve prediction of NSQIP serious complications compared to either technique alone. The additive nature of these two modalities suggests they likely capture unique aspects of a patient's fitness for surgery.

摘要

我们旨在确定采用分析形态学(AM)的综合影像分析在对胰腺手术患者进行风险分层时是否能增强或替代老年评估(GA)。从一个前瞻性队列中识别出134例胰腺手术患者。该队列中的63例患者除了接受全面的老年评估外,还进行了术前CT扫描。使用AM对CT扫描进行处理。通过将AM和GA测量值添加到我们之前定义的临床基础风险模型(年龄、体重指数、美国麻醉医师协会分级和查尔森合并症指数)中,利用单因素分析和稳健弹性网模型来评估与美国国立外科手术质量改进计划(NSQIP)严重并发症的相关性,以获得受试者工作特征曲线(AUROC)。单因素分析显示,NSQIP严重并发症与腰大肌亨氏单位(HU)较低(p = 0.002)、低密度(0至30 HU)腰大肌面积(p = 0.01)、内脏脂肪HU(p≤0.001)、内脏脂肪面积(p = 0.009)、皮下脂肪HU(p = 0.023)和全身面积(p = 0.012)相关。将基础模型与老年评估和腰大肌HU相结合的弹性网模型(AUC = 0.751)以及单独使用AM的模型(AUC = 0.739)比单独的基础模型(AUC = 0.601)具有更高的预测价值。联合使用AM和GA的模型具有最高的预测价值(AUC = 0.841)。与单独使用任何一种技术相比,AM和GA联合使用时能更好地预测NSQIP严重并发症。这两种模式的相加性质表明它们可能捕捉到了患者手术适应性的独特方面。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验