Suppr超能文献

为什么羟基自由基是唯一一种通常会加成到DNA上的自由基?假说:它具有高亲电性、高热化学反应性以及能在DNA附近发生的产生方式这一罕见组合。

Why is the hydroxyl radical the only radical that commonly adds to DNA? Hypothesis: it has a rare combination of high electrophilicity, high thermochemical reactivity, and a mode of production that can occur near DNA.

作者信息

Pryor W A

机构信息

Biodynamics Institute, Louisiana State University, Baton Rouge 70803.

出版信息

Free Radic Biol Med. 1988;4(4):219-23. doi: 10.1016/0891-5849(88)90043-3.

Abstract

Free radicals do not commonly add to nucleotides in DNA, despite the fact that radicals are produced in all aerobically metabolizing cells. Why is this? For oxy-radicals, the ratio of the rate constant for addition to double bonds divided by that for H-abstraction from good H-donors parallels the electrophilicity of the radical, and among oxy-radicals the hydroxyl radical is the most electrophilic, with an unusually high ratio of Kad/kH. The hydroxyl radical also is very reactive in H-atom abstraction reactions, with a large absolute value of kH. However, the hydroxyl radical's high reactivity makes it unselective and relatively nondiscriminating between H-abstraction from a sugar moiety in DNA and penetration to, and reaction with, a base. Oxy-radicals such as alkoxyl and peroxyl radicals do not have as high electrophilicity or as high reactivity. Interestingly, carbon-centered radicals (such as the methyl radical) also can both add to double bonds and abstract H-atoms, but carbon-centered radicals are not commonly observed to add to DNA bases. However, they cannot be generated near DNA in vivo. In contrast, hydroxyl radical generating systems appear to complex with DNA and produce the hydroxyl radical in the immediate vicinity of the DNA, producing a type of DNA damage that is called site specific. Thus, addition of a radical to a DNA base may require all three features possessed by the hydroxyl radical: high electrophilicity, high thermokinetic reactivity, and a mechanism for production near DNA.

摘要

尽管在所有进行有氧代谢的细胞中都会产生自由基,但自由基通常不会加成到DNA中的核苷酸上。这是为什么呢?对于氧自由基,加成到双键的速率常数与从优质氢供体上夺取氢的速率常数之比与自由基的亲电性平行,在氧自由基中,羟基自由基的亲电性最强,其Kad/kH比值异常高。羟基自由基在氢原子夺取反应中也非常活泼,kH的绝对值很大。然而,羟基自由基的高反应活性使其具有非选择性,在从DNA中的糖部分夺取氢以及渗透到碱基并与之反应之间相对没有区别。烷氧基和过氧自由基等氧自由基没有那么高的亲电性或反应活性。有趣的是,以碳为中心的自由基(如甲基自由基)也既能加成到双键上,也能夺取氢原子,但通常没有观察到以碳为中心的自由基加成到DNA碱基上。然而,它们在体内无法在DNA附近生成。相比之下,羟基自由基生成系统似乎会与DNA结合,并在DNA的紧邻区域产生羟基自由基,从而产生一种被称为位点特异性的DNA损伤类型。因此,自由基加成到DNA碱基上可能需要羟基自由基具备的所有三个特征:高亲电性、高热动力学反应活性以及在DNA附近产生的机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验