Suppr超能文献

基于股骨近端总面积的性别估计:一种密度测定法。

Sex estimation with the total area of the proximal femur: A densitometric approach.

作者信息

Curate Francisco, Albuquerque Anabela, Ferreira Izilda, Cunha Eugénia

机构信息

Research Centre for Anthropology and Health, Department of Life Sciences, University of Coimbra, Coimbra, Portugal; Laboratory of Forensic Anthropology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal; Interdisciplinary Center for Archaeology and Evolution of Human Behavior, University of Algarve, Faro, Portugal.

The Coimbra Hospital and University Centre, Coimbra, Portugal.

出版信息

Forensic Sci Int. 2017 Jun;275:110-116. doi: 10.1016/j.forsciint.2017.02.035. Epub 2017 Mar 8.

Abstract

The estimation of sex is a central step to establish the biological profile of an anonymous skeletal individual. Imaging techniques, including bone densitometry, have been used to evaluate sex in remains incompletely skeletonized. In this paper, we present a technique for sex estimation using the total area (TA) of the proximal femur, a two-dimensional areal measurement determined through densitometry. TA was acquired from a training sample (112 females; 112 males) from the Coimbra Identified Skeletal Collection (University of Coimbra, Portugal). Logistic regression (LR), linear discriminant analysis (LDA), reduce error pruning trees (REPTree), and classification and regression trees (CART) were employed in order to obtain models that could predict sex in unidentified skeletal remains. Under cross-validation, the proposed models correctly estimated sex in 90.2-92.0% of cases (bias ranging from 1.8% to 4.5%). The models were evaluated in an independent test sample (30 females; 30 males) from the 21st Century Identified Skeletal Collection (University of Coimbra, Portugal), with a sex allocation accuracy ranging from 90.0% to 91.7% (bias from 3.3% to 10.0%). Overall, data mining classifiers, especially the REPTree, performed better than the traditional classifiers (LR and LDA), maximizing overall accuracy and minimizing bias. This study emphasizes the significant value of bone densitometry to estimate sex in cadaveric remains in diverse states of preservation and completeness, even human remains with soft tissues.

摘要

性别估计是确定无名骨骼个体生物学特征的核心步骤。包括骨密度测定在内的成像技术已被用于评估未完全骨骼化遗骸的性别。在本文中,我们提出了一种利用股骨近端总面积(TA)进行性别估计的技术,TA是通过骨密度测定确定的二维面积测量值。TA取自科英布拉已识别骨骼收藏(葡萄牙科英布拉大学)的一个训练样本(112名女性;112名男性)。采用逻辑回归(LR)、线性判别分析(LDA)、减少误差剪枝树(REPTree)和分类与回归树(CART)来获得能够预测无名骨骼遗骸性别的模型。在交叉验证下,所提出的模型在90.2%至92.0%的案例中正确估计了性别(偏差范围为1.8%至4.5%)。这些模型在来自21世纪已识别骨骼收藏(葡萄牙科英布拉大学)的一个独立测试样本(30名女性;30名男性)中进行了评估,性别分配准确率在90.0%至91.7%之间(偏差为3.3%至10.0%)。总体而言,数据挖掘分类器,尤其是REPTree,比传统分类器(LR和LDA)表现更好,最大限度地提高了总体准确率并最小化了偏差。本研究强调了骨密度测定在估计处于不同保存状态和完整性的尸体遗骸(甚至带有软组织的人类遗骸)性别方面的重要价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验