Suppr超能文献

揭示灵长类大脑类型中网络布线的特定变化。

Uncovering specific changes in network wiring underlying the primate cerebrotype.

机构信息

Department of Cognitive Neurology, HIH for Clinical Brain Research, Otfried-Müller-Str. 27, 72076, Tübingen, Germany.

Department of Integrative Medical Biology, Umeå University, Linnéus väg 9, 901 87, Umeå, Sweden.

出版信息

Brain Struct Funct. 2017 Sep;222(7):3255-3266. doi: 10.1007/s00429-017-1402-6. Epub 2017 Mar 25.

Abstract

Regular scaling of brain networks during evolution has been proposed to be the major process leading to enlarged brains. Alternative views, however, suggest that deviations from regular scaling were crucial to the evolution of the primate brain and the emergence of different cerebrotypes. Here, we examined the scaling within the major link between the cerebellum and the cerebral cortex by studying the deep cerebellar nuclei (DCN). We compared the major axonal and dendritic wiring in the DCN of rodents and monkeys in search of regular scaling. We were able to confirm regular scaling within the density of neurons, the general dendritic length per neuron and the Purkinje cell axon length. However, we also observed specific modification of the scaling rules within the primates' largest and phylogenetically newest DCN, the dentate nucleus (LN/dentate). Our analysis shows a deviation from regular scaling in the predicted dendritic length per neuron in the LN/dentate. This reduction in the dendritic length is also associated with a smaller dendritic region-of-influence of these neurons. We also detected specific changes in the dendritic diameter distribution, supporting the theory that there is a shift in the neuronal population of the LN/dentate towards neurons that exhibit spatially restricted, clustered branching trees. The smaller dendritic fields would enable a larger number of network modules to be accommodated in the primate LN/dentate and would provide an explanation for the unique folded structure of the primate LN/dentate. Our results show that, in some brain regions, connectivity maximization (i.e., an increase of dendritic fields) is not the sole optimum and that increases in the number of network modules may be important for the emergence of a divergent primate cerebrotype.

摘要

在进化过程中,大脑网络的常规缩放被认为是导致大脑增大的主要过程。然而,另一种观点认为,偏离常规缩放对于灵长类动物大脑的进化和不同脑型的出现至关重要。在这里,我们通过研究深部小脑核(DCN)来检查小脑与大脑皮层之间的主要连接的缩放。我们比较了啮齿动物和猴子的 DCN 的主要轴突和树突布线,以寻找常规缩放。我们能够确认神经元密度、每个神经元的一般树突长度和浦肯野细胞轴突长度的规则缩放。然而,我们也观察到灵长类动物最大和进化最新的 DCN(齿状核(LN/dentate))中的缩放规则的特定修改。我们的分析显示,在 LN/dentate 中每个神经元的预测树突长度上存在偏离规则缩放的情况。这种树突长度的减少也与这些神经元的树突影响区域较小有关。我们还检测到树突直径分布的特定变化,支持这样一种理论,即 LN/dentate 中的神经元群体向表现出空间限制、聚类分支树的神经元发生转变。较小的树突场将使更多的网络模块能够适应灵长类动物的 LN/dentate,并为灵长类动物 LN/dentate 的独特折叠结构提供解释。我们的结果表明,在某些大脑区域,连接最大化(即树突场的增加)不是唯一的最佳选择,网络模块数量的增加可能对于出现不同的灵长类脑型很重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56c9/5585288/f9d8c4d15d90/429_2017_1402_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验