CREOL, The College of Optics &Photonics, University of Central Florida, Orlando, FL 32816, USA.
Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA.
Sci Rep. 2017 Mar 27;7:44995. doi: 10.1038/srep44995.
Interferometry is one of the central organizing principles of optics. Key to interferometry is the concept of optical delay, which facilitates spectral analysis in terms of time-harmonics. In contrast, when analyzing a beam in a Hilbert space spanned by spatial modes - a critical task for spatial-mode multiplexing and quantum communication - basis-specific principles are invoked that are altogether distinct from that of 'delay'. Here, we extend the traditional concept of temporal delay to the spatial domain, thereby enabling the analysis of a beam in an arbitrary spatial-mode basis - exemplified using Hermite-Gaussian and radial Laguerre-Gaussian modes. Such generalized delays correspond to optical implementations of fractional transforms; for example, the fractional Hankel transform is the generalized delay associated with the space of Laguerre-Gaussian modes, and an interferometer incorporating such a 'delay' obtains modal weights in the associated Hilbert space. By implementing an inherently stable, reconfigurable spatial-light-modulator-based polarization-interferometer, we have constructed a 'Hilbert-space analyzer' capable of projecting optical beams onto any modal basis.
干涉测量是光学的核心组织原则之一。干涉测量的关键是光延迟的概念,它有利于根据时谐波进行光谱分析。相比之下,当在由空间模式张成的希尔伯特空间中分析光束时——这是空间模式复用和量子通信的关键任务——就会调用与“延迟”完全不同的基于基的原理。在这里,我们将传统的时间延迟概念扩展到空间域,从而能够在任意空间模式基中分析光束——使用厄米特-高斯和径向拉盖尔-高斯模式进行了示例。这种广义延迟对应于分数变换的光学实现;例如,分数汉克尔变换是与拉盖尔-高斯模式空间相关的广义延迟,并且包含这种“延迟”的干涉仪在相关的希尔伯特空间中获得模态权重。通过实现一种固有稳定、可重构的基于空间光调制器的偏振干涉仪,我们构建了一种能够将光束投影到任何模态基上的“希尔伯特空间分析仪”。