Montaut Nicola, Magaña-Loaiza Omar S, Bartley Tim J, Verma Varun B, Nam Sae Woo, Mirin Richard P, Silberhorn Christine, Gerrits Thomas
Integrated Quantum Optics, Universität Paderborn, Warburger Strasse 100, 33098 Paderborn, Germany.
National Institute for Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA.
Optica. 2018;5(11). doi: 10.1364/optica.5.001418.
In the past few years, physicists and engineers have demonstrated the possibility of utilizing multiple degrees of freedom of the photon to perform information processing tasks for a wide variety of applications. Furthermore, complex states of light offer the possibility of encoding and processing many bits of information in a single photon. However, the challenges involved in the process of extracting large amounts of information, encoded in photonic states, impose practical limitations to realistic quantum technologies. Here, we demonstrate characterization of quantum correlated photon pairs in the spatial and spectral degrees of freedom. Our technique utilizes a series of random projective measurements in the spatial basis that do not perturb the spectral properties of the photon. The sparsity in the spatial properties of downconverted photons allows us to exploit the potential of compressive sensing to reduce the number of measurements to reconstruct spatial and spectral properties of correlated photon pairs at telecom wavelength. We demonstrate characterization of a photonic state with 12 × 10 dimensions using only 20% of the measurements with respect to the conventional raster scan technique. Our characterization technique opens the possibility of increasing and exploiting the complexity and dimensionality of quantum protocols that utilize multiple degrees of freedom of light with high efficiency.
在过去几年中,物理学家和工程师已经证明了利用光子的多个自由度来执行各种应用的信息处理任务的可能性。此外,复杂的光态提供了在单个光子中编码和处理多位信息的可能性。然而,从光子态中提取大量编码信息的过程中所涉及的挑战,对实际的量子技术施加了实际限制。在这里,我们展示了在空间和光谱自由度上对量子关联光子对的表征。我们的技术利用了空间基中的一系列随机投影测量,这些测量不会干扰光子的光谱特性。下转换光子空间特性的稀疏性使我们能够利用压缩感知的潜力,减少测量次数,以重建电信波长下关联光子对的空间和光谱特性。相对于传统的光栅扫描技术,我们仅使用20%的测量就展示了对一个12×10维光子态的表征。我们的表征技术开启了高效增加和利用利用光的多个自由度的量子协议的复杂性和维度的可能性。