Suppr超能文献

利用复杂网络优化前列腺癌患者的生存预后。

Using complex networks for refining survival prognosis in prostate cancer patient.

作者信息

Zanin Massimiliano

机构信息

Innaxis Foundation & Research Institute, Madrid, Spain; Department of Electrical Engineering, Faculty of Sciences and Technology, Universidade Nova de Lisboa, Caparica, Portugal.

出版信息

F1000Res. 2016 Nov 16;5:2675. doi: 10.12688/f1000research.8282.1. eCollection 2016.

Abstract

Complex network theory has been used, during the last decade, to understand the structures behind complex biological problems, yielding new knowledge in a large number of situations. Nevertheless, such knowledge has remained mostly qualitative. In this contribution, I show how information extracted from a network representation can be used in a quantitative way, to improve the score of a classification task. As a test bed, I consider a dataset corresponding to patients suffering from prostate cancer, and the task of successfully prognosing their survival. When information from a complex network representation is added on top of a simple classification model, the error is reduced from 27.9% to 23.8%. This confirms that network theory can be used to synthesize information that may not readily be accessible by standard data mining algorithms.

摘要

在过去十年中,复杂网络理论已被用于理解复杂生物学问题背后的结构,在大量情况下产生了新知识。然而,这些知识大多仍停留在定性层面。在本论文中,我展示了如何以定量方式使用从网络表示中提取的信息,以提高分类任务的得分。作为测试平台,我考虑了一个与前列腺癌患者相关的数据集,以及成功预测其生存情况的任务。当在简单分类模型之上添加来自复杂网络表示的信息时,错误率从27.9%降至23.8%。这证实了网络理论可用于合成标准数据挖掘算法可能无法轻易获取的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f24/5333606/dd3cdb0ca137/f1000research-5-8908-g0000.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验