Suppr超能文献

一种用于网络可视化、排序和粗粒化的统一数据表示理论。

A unified data representation theory for network visualization, ordering and coarse-graining.

作者信息

Kovács István A, Mizsei Réka, Csermely Péter

机构信息

Wigner Research Centre, Institute for Solid State Physics and Optics, H-1525 Budapest, P.O.Box 49, Hungary.

Institute of Theoretical Physics, Szeged University, H-6720 Szeged, Hungary.

出版信息

Sci Rep. 2015 Sep 8;5:13786. doi: 10.1038/srep13786.

Abstract

Representation of large data sets became a key question of many scientific disciplines in the last decade. Several approaches for network visualization, data ordering and coarse-graining accomplished this goal. However, there was no underlying theoretical framework linking these problems. Here we show an elegant, information theoretic data representation approach as a unified solution of network visualization, data ordering and coarse-graining. The optimal representation is the hardest to distinguish from the original data matrix, measured by the relative entropy. The representation of network nodes as probability distributions provides an efficient visualization method and, in one dimension, an ordering of network nodes and edges. Coarse-grained representations of the input network enable both efficient data compression and hierarchical visualization to achieve high quality representations of larger data sets. Our unified data representation theory will help the analysis of extensive data sets, by revealing the large-scale structure of complex networks in a comprehensible form.

摘要

在过去十年中,大数据集的表示成为许多科学学科的关键问题。几种用于网络可视化、数据排序和粗粒化的方法实现了这一目标。然而,没有将这些问题联系起来的基础理论框架。在这里,我们展示了一种优雅的、信息论的数据表示方法,作为网络可视化、数据排序和粗粒化的统一解决方案。通过相对熵衡量,最优表示最难与原始数据矩阵区分开来。将网络节点表示为概率分布提供了一种有效的可视化方法,并且在一维中,实现了网络节点和边的排序。输入网络的粗粒化表示既实现了高效的数据压缩,又实现了分层可视化,以获得更大数据集的高质量表示。我们的统一数据表示理论将通过以可理解的形式揭示复杂网络的大规模结构,帮助分析大量数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验