State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China.
Nanoscale. 2017 May 25;9(20):6658-6664. doi: 10.1039/c6nr09648d.
Obtaining high efficiency room temperature phosphorescence (RTP) by employing non-noble metals poses two challenges: (1) strengthening spin-orbit coupling of excitons to improve the rate of intersystem crossing (ISC) by using non-noble metals with small-atomic-number; (2) employing structural confinement to enhance radiation relaxation because harsh conditions, including carefully selected matrices, rigid solid-state crystalline structure and low temperature, are commonly needed. Here, layered double hydroxides (LDHs) with orderly non-noble metal arrangements were used as an inorganic matrix to activate RTP of carbon dots (CDs). The Zn orderly arranged on the LDH layer contributes to the enhancement in spin-orbit coupling of excitons and the decrease in the energy gap for the singlet-triplet state. The structural confinements of the LDH layer and nano-interlayer testify that the phosphorescence of CDs-LDHs originates from the suppressed radiationless relaxation processes. Using the high tunability of metal species and ratios on the LDH layer, this method can be widely applied to optimize ISC and phosphorescence properties.
采用非贵金属获得高效率室温磷光(RTP)面临两个挑战:(1)利用原子序数较小的非贵金属增强激子的自旋轨道耦合作用,以提高系间窜越(ISC)的速率;(2)采用结构限制来增强辐射弛豫,因为通常需要苛刻的条件,包括精心选择的基质、刚性固态结晶结构和低温。在这里,具有有序非贵金属排列的层状双氢氧化物(LDHs)被用作无机基质来激活碳点(CDs)的 RTP。LDH 层上有序排列的 Zn 有助于增强激子的自旋轨道耦合作用,并降低单重态-三重态能级差。LDH 层和纳米层间的结构限制证明了 CDs-LDHs 的磷光源于受抑制的无辐射弛豫过程。通过 LDH 层上金属种类和比例的高可调节性,这种方法可以广泛应用于优化 ISC 和磷光性能。