Suppr超能文献

基于字典学习和奇异值分解的旋转机械智能诊断方法

Intelligent Diagnosis Method for Rotating Machinery Using Dictionary Learning and Singular Value Decomposition.

作者信息

Han Te, Jiang Dongxiang, Zhang Xiaochen, Sun Yankui

机构信息

State Key Lab of Control and Simulation of Power Systems and Generation Equipment, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China.

Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China.

出版信息

Sensors (Basel). 2017 Mar 27;17(4):689. doi: 10.3390/s17040689.

Abstract

Rotating machinery is widely used in industrial applications. With the trend towards more precise and more critical operating conditions, mechanical failures may easily occur. Condition monitoring and fault diagnosis (CMFD) technology is an effective tool to enhance the reliability and security of rotating machinery. In this paper, an intelligent fault diagnosis method based on dictionary learning and singular value decomposition (SVD) is proposed. First, the dictionary learning scheme is capable of generating an adaptive dictionary whose atoms reveal the underlying structure of raw signals. Essentially, dictionary learning is employed as an adaptive feature extraction method regardless of any prior knowledge. Second, the singular value sequence of learned dictionary matrix is served to extract feature vector. Generally, since the vector is of high dimensionality, a simple and practical principal component analysis (PCA) is applied to reduce dimensionality. Finally, the -nearest neighbor (KNN) algorithm is adopted for identification and classification of fault patterns automatically. Two experimental case studies are investigated to corroborate the effectiveness of the proposed method in intelligent diagnosis of rotating machinery faults. The comparison analysis validates that the dictionary learning-based matrix construction approach outperforms the mode decomposition-based methods in terms of capacity and adaptability for feature extraction.

摘要

旋转机械在工业应用中广泛使用。随着运行条件越来越精确和关键,机械故障可能很容易发生。状态监测与故障诊断(CMFD)技术是提高旋转机械可靠性和安全性的有效工具。本文提出了一种基于字典学习和奇异值分解(SVD)的智能故障诊断方法。首先,字典学习方案能够生成一个自适应字典,其原子揭示了原始信号的潜在结构。本质上,字典学习被用作一种自适应特征提取方法,无需任何先验知识。其次,将学习到的字典矩阵的奇异值序列用于提取特征向量。一般来说,由于该向量具有高维性,因此应用简单实用的主成分分析(PCA)进行降维。最后,采用K近邻(KNN)算法自动识别和分类故障模式。通过两个实验案例研究来证实所提方法在旋转机械故障智能诊断中的有效性。对比分析验证了基于字典学习的矩阵构建方法在特征提取能力和适应性方面优于基于模式分解的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adfb/5419802/813859ff07d0/sensors-17-00689-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验