Mohanty Biswaranjan, Rimmer Kieran, McMahon Róisín M, Headey Stephen J, Vazirani Mansha, Shouldice Stephen R, Coinçon Mathieu, Tay Stephanie, Morton Craig J, Simpson Jamie S, Martin Jennifer L, Scanlon Martin J
Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
The University of Queensland, Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, Brisbane, Queensland, Australia.
PLoS One. 2017 Mar 27;12(3):e0173436. doi: 10.1371/journal.pone.0173436. eCollection 2017.
At a time when the antibiotic drug discovery pipeline has stalled, antibiotic resistance is accelerating with catastrophic implications for our ability to treat bacterial infections. Globally we face the prospect of a future when common infections can once again kill. Anti-virulence approaches that target the capacity of the bacterium to cause disease rather than the growth or survival of the bacterium itself offer a tantalizing prospect of novel antimicrobials. They may also reduce the propensity to induce resistance by removing the strong selection pressure imparted by bactericidal or bacteriostatic agents. In the human pathogen Pseudomonas aeruginosa, disulfide bond protein A (PaDsbA1) plays a central role in the oxidative folding of virulence factors and is therefore an attractive target for the development of new anti-virulence antimicrobials. Using a fragment-based approach we have identified small molecules that bind to PaDsbA1. The fragment hits show selective binding to PaDsbA1 over the DsbA protein from Escherichia coli, suggesting that developing species-specific narrow-spectrum inhibitors of DsbA enzymes may be feasible. Structures of a co-complex of PaDsbA1 with the highest affinity fragment identified in the screen reveal that the fragment binds on the non-catalytic surface of the protein at a domain interface. This biophysical and structural data represent a starting point in the development of higher affinity compounds, which will be assessed for their potential as selective PaDsbA1 inhibitors.
在抗生素药物研发渠道停滞不前的当下,抗生素耐药性却在加速发展,这对我们治疗细菌感染的能力产生了灾难性影响。在全球范围内,我们面临着这样一种未来前景:常见感染可能再次致人死亡。针对细菌致病能力而非细菌自身生长或存活的抗毒力方法,为新型抗菌药物提供了诱人的前景。通过消除杀菌或抑菌剂所带来的强大选择压力,它们或许还能降低诱导耐药性的倾向。在人类病原体铜绿假单胞菌中,二硫键蛋白A(PaDsbA1)在毒力因子的氧化折叠过程中起着核心作用,因此是开发新型抗毒力抗菌药物的一个有吸引力的靶点。我们采用基于片段的方法,鉴定出了与PaDsbA1结合的小分子。这些片段命中物显示出对PaDsbA1的选择性结合,超过了来自大肠杆菌的DsbA蛋白,这表明开发DsbA酶的物种特异性窄谱抑制剂可能是可行的。在筛选中鉴定出的与PaDsbA1亲和力最高的片段的共复合物结构表明,该片段在蛋白质的非催化表面的一个结构域界面处结合。这些生物物理和结构数据是开发更高亲和力化合物的起点,将对其作为选择性PaDsbA1抑制剂的潜力进行评估。