Sofer Tamar, Schifano Elizabeth D, Christiani David C, Lin Xihong
Department of Biostatistics, University of Washington, Seattle, Washington 98105, U.S.A.
Department of Statistics, University of Connecticut, Storrs, Connecticut 06269, U.S.A.
Biometrics. 2017 Dec;73(4):1210-1220. doi: 10.1111/biom.12680. Epub 2017 Mar 27.
We propose a weighted pseudolikelihood method for analyzing the association of a SNP set, example, SNPs in a gene or a genetic pathway or network, with multiple secondary phenotypes in case-control genetic association studies. To boost analysis power, we assume that the SNP-specific effects are shared across all secondary phenotypes using a scaled mean model. We estimate regression parameters using Inverse Probability Weighted (IPW) estimating equations obtained from the weighted pseudolikelihood, which accounts for case-control sampling to prevent potential ascertainment bias. To test the effect of a SNP set, we propose a weighted variance component pseudo-score test. We also propose a penalized IPW pseudolikelihood method for selecting a subset of SNPs that are associated with the multiple secondary phenotypes. We show that the proposed variable selection procedure has the oracle properties and is robust to misspecification of the correlation structure among secondary phenotypes. We select the tuning parameter using a weighted Bayesian Information-like Criterion (wBIC). We evaluate the finite sample performance of the proposed methods via simulations, and illustrate the methods by the analysis of the multiple secondary smoking behavior outcomes in a lung cancer case-control genetic association study.
我们提出了一种加权伪似然方法,用于在病例对照基因关联研究中分析单核苷酸多态性(SNP)集(例如,一个基因、一条遗传通路或网络中的SNP)与多个次要表型之间的关联。为了提高分析效能,我们使用缩放均值模型假设SNP特异性效应在所有次要表型中是共享的。我们使用从加权伪似然中获得的逆概率加权(IPW)估计方程来估计回归参数,该方程考虑了病例对照抽样以防止潜在的确定偏倚。为了检验SNP集的效应,我们提出了一种加权方差分量伪得分检验。我们还提出了一种惩罚IPW伪似然方法,用于选择与多个次要表型相关的SNP子集。我们表明,所提出的变量选择程序具有神谕属性,并且对次要表型之间相关结构的错误设定具有鲁棒性。我们使用加权贝叶斯信息准则(wBIC)选择调整参数。我们通过模拟评估所提出方法的有限样本性能,并通过对肺癌病例对照基因关联研究中多个次要吸烟行为结果的分析来说明这些方法。