Suppr超能文献

区分与年龄相关的认知衰退和痴呆症:一项基于机器学习算法的研究。

Distinguishing age-related cognitive decline from dementias: A study based on machine learning algorithms.

作者信息

Er Füsun, Iscen Pınar, Sahin Sevki, Çinar Nilgun, Karsidag Sibel, Goularas Dionysis

机构信息

Department of Biotechnology, Graduate School of Natural and Applied Sciences, Yeditepe University, Istanbul, Turkey.

Department of Neuroscience, Experimental Medicine and Research Institute, Istanbul University, Istanbul, Turkey.

出版信息

J Clin Neurosci. 2017 Aug;42:186-192. doi: 10.1016/j.jocn.2017.03.021. Epub 2017 Mar 24.

Abstract

BACKGROUND AND AIM

This study aims to examine the distinguishability of age-related cognitive decline (ARCD) from dementias based on some neurocognitive tests using machine learning.

MATERIALS AND METHODS

106 subjects were divided into four groups: ARCD (n=30), probable Alzheimer's disease (AD) (n=20), vascular dementia (VD) (n=21) and amnestic mild cognitive impairment (MCI) (n=35). The following tests were applied to all subjects: The Wechsler memory scale-revised, a clock-drawing, the dual similarities, interpretation of proverbs, word fluency, the Stroop, the Boston naming (BNT), the Benton face recognition, a copying-drawings and Öktem verbal memory processes (Ö-VMPT) tests. A multilayer perceptron, a support vector machine and a classification via regression with M5-model trees were employed for classification.

RESULTS

The pairwise classification results show that ARCD is completely separable from AD with a success rate of 100% and highly separable from MCI and VD with success rates of 95.4% and 86.30%, respectively. The neurocognitive tests with the higher merit values were Ö-VMPT recognition (ARCD vs. AD), Ö-VMPT total learning (ARCD vs. MCI) and semantic fluency, proverbs, Stroop interference and naming BNT (ARCD vs. VD).

CONCLUSION

The findings show that machine learning can be successfully utilized for distinguishing ARCD from dementias based on neurocognitive tests.

摘要

背景与目的

本研究旨在通过机器学习,基于一些神经认知测试来检验年龄相关性认知衰退(ARCD)与痴呆症之间的可区分性。

材料与方法

106名受试者被分为四组:ARCD组(n = 30)、可能的阿尔茨海默病(AD)组(n = 20)、血管性痴呆(VD)组(n = 21)和遗忘型轻度认知障碍(MCI)组(n = 35)。对所有受试者进行了以下测试:修订版韦氏记忆量表、画钟测试、双重相似性测试、谚语解释、词语流畅性测试、斯特鲁普测试、波士顿命名测试(BNT)、本顿面部识别测试、临摹绘图测试以及奥克泰姆言语记忆过程(Ö-VMPT)测试。采用多层感知器、支持向量机以及基于M5模型树的回归分类法进行分类。

结果

两两分类结果显示,ARCD与AD完全可分离,成功率为100%;与MCI和VD高度可分离,成功率分别为95.4%和86.30%。具有较高价值的神经认知测试为Ö-VMPT识别(ARCD与AD对比)、Ö-VMPT总学习量(ARCD与MCI对比)以及语义流畅性、谚语、斯特鲁普干扰和BNT命名(ARCD与VD对比)。

结论

研究结果表明,基于神经认知测试,机器学习可成功用于区分ARCD与痴呆症。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验