Barton Matthias, Filardo Edward J, Lolait Stephen J, Thomas Peter, Maggiolini Marcello, Prossnitz Eric R
Molecular Internal Medicine, University of Zürich, 8057 Zürich, Switzerland.
Rhode Island Hospital, Brown University, Providence, RI 02903, USA.
J Steroid Biochem Mol Biol. 2018 Feb;176:4-15. doi: 10.1016/j.jsbmb.2017.03.021. Epub 2017 Mar 25.
Estrogens play a critical role in many aspects of physiology, particularly female reproductive function, but also in pathophysiology, and are associated with protection from numerous diseases in premenopausal women. Steroids and the effects of estrogen have been known for ∼90 years, with the first evidence for a receptor for estrogen presented ∼50 years ago. The original ancestral steroid receptor, extending back into evolution more than 500 million years, was likely an estrogen receptor, whereas G protein-coupled receptors (GPCRs) trace their origins back into history more than one billion years. The classical estrogen receptors (ERα and ERβ) are ligand-activated transcription factors that confer estrogen sensitivity upon many genes. It was soon apparent that these, or novel receptors may also be responsible for the "rapid"/"non-genomic" membrane-associated effects of estrogen. The identification of an orphan GPCR (GPR30, published in 1996) opened a new field of research with the description in 2000 that GPR30 expression is required for rapid estrogen signaling. In 2005-2006, the field was greatly stimulated by two studies that described the binding of estrogen to GPR30-expressing cell membranes, followed by the identification of a GPR30-selective agonist (that lacked binding and activity towards ERα and ERβ). Renamed GPER (G protein-coupled estrogen receptor) by IUPHAR in 2007, the total number of articles in PubMed related to this receptor recently surpassed 1000. In this article, the authors present personal perspectives on how they became involved in the discovery and/or advancement of GPER research. These areas include non-genomic effects on vascular tone, receptor cloning, molecular and cellular biology, signal transduction mechanisms and pharmacology of GPER, highlighting the roles of GPER and GPER-selective compounds in diseases such as obesity, diabetes, and cancer and the obligatory role of GPER in propagating cardiovascular aging, arterial hypertension and heart failure through the stimulation of Nox expression.
雌激素在生理学的许多方面发挥着关键作用,尤其是在女性生殖功能方面,但在病理生理学中也同样如此,并且与绝经前女性预防多种疾病有关。类固醇以及雌激素的作用已为人所知约90年,大约50年前首次出现雌激素受体的证据。最初的原始类固醇受体可追溯到5亿多年前的进化过程,很可能是雌激素受体,而G蛋白偶联受体(GPCRs)的起源则可追溯到10亿多年前。经典的雌激素受体(ERα和ERβ)是配体激活的转录因子,可赋予许多基因雌激素敏感性。很快就发现,这些受体或新的受体可能也负责雌激素的“快速”/“非基因组”膜相关效应。孤儿GPCR(GPR30,于1996年发表)的鉴定开启了一个新的研究领域,2000年有研究描述GPR30表达是快速雌激素信号传导所必需的。2005 - 2006年,两项研究极大地推动了该领域的发展,这两项研究描述了雌激素与表达GPR30的细胞膜结合,随后鉴定出一种GPR30选择性激动剂(对ERα和ERβ缺乏结合和活性)。2007年被国际药理学联合会(IUPHAR)重新命名为GPER(G蛋白偶联雌激素受体),最近在PubMed上与该受体相关的文章总数已超过1000篇。在本文中,作者就他们如何参与GPER研究的发现和/或推进提出了个人观点。这些领域包括对血管张力的非基因组效应、受体克隆、分子和细胞生物学、GPER的信号转导机制和药理学,强调了GPER和GPER选择性化合物在肥胖、糖尿病和癌症等疾病中的作用,以及GPER通过刺激Nox表达在促进心血管衰老、动脉高血压和心力衰竭中的必然作用。