Suppr超能文献

早期南极冰期的演变。

Evolution of the early Antarctic ice ages.

作者信息

Liebrand Diederik, de Bakker Anouk T M, Beddow Helen M, Wilson Paul A, Bohaty Steven M, Ruessink Gerben, Pälike Heiko, Batenburg Sietske J, Hilgen Frederik J, Hodell David A, Huck Claire E, Kroon Dick, Raffi Isabella, Saes Mischa J M, van Dijk Arnold E, Lourens Lucas J

机构信息

National Oceanography Centre Southampton, University of Southampton, Southampton SO14 3ZH, United Kingdom;

Department of Physical Geography, Faculty of Geosciences, Utrecht University, 3508 TC Utrecht, The Netherlands.

出版信息

Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):3867-3872. doi: 10.1073/pnas.1615440114. Epub 2017 Mar 27.

Abstract

Understanding the stability of the early Antarctic ice cap in the geological past is of societal interest because present-day atmospheric CO concentrations have reached values comparable to those estimated for the Oligocene and the Early Miocene epochs. Here we analyze a new high-resolution deep-sea oxygen isotope (δO) record from the South Atlantic Ocean spanning an interval between 30.1 My and 17.1 My ago. The record displays major oscillations in deep-sea temperature and Antarctic ice volume in response to the ∼110-ky eccentricity modulation of precession. Conservative minimum ice volume estimates show that waxing and waning of at least ∼85 to 110% of the volume of the present East Antarctic Ice Sheet is required to explain many of the ∼110-ky cycles. Antarctic ice sheets were typically largest during repeated glacial cycles of the mid-Oligocene (∼28.0 My to ∼26.3 My ago) and across the Oligocene-Miocene Transition (∼23.0 My ago). However, the high-amplitude glacial-interglacial cycles of the mid-Oligocene are highly symmetrical, indicating a more direct response to eccentricity modulation of precession than their Early Miocene counterparts, which are distinctly asymmetrical-indicative of prolonged ice buildup and delayed, but rapid, glacial terminations. We hypothesize that the long-term transition to a warmer climate state with sawtooth-shaped glacial cycles in the Early Miocene was brought about by subsidence and glacial erosion in West Antarctica during the Late Oligocene and/or a change in the variability of atmospheric CO levels on astronomical time scales that is not yet captured in existing proxy reconstructions.

摘要

了解地质历史时期早期南极冰盖的稳定性具有重要的社会意义,因为当今大气中的二氧化碳浓度已达到与渐新世和中新世早期估计值相当的水平。在此,我们分析了一份来自南大西洋的新的高分辨率深海氧同位素(δO)记录,该记录跨越了距今3010万年至1710万年的时间段。该记录显示,深海温度和南极冰量随岁差的约11万年偏心率调制而出现重大波动。保守的最小冰量估计表明,为了解释许多约11万年的周期,至少需要东南极冰盖目前体积的约85%至110%出现增减变化。在渐新世中期(约2800万年至约2630万年前)的多次冰川周期以及渐新世 - 中新世过渡时期(约2300万年前),南极冰盖通常是最大的。然而,渐新世中期的高振幅冰期 - 间冰期循环高度对称,表明其对岁差的偏心率调制的响应比中新世早期的对应循环更直接,后者明显不对称,表明冰量积累时间延长且冰川终止延迟但迅速。我们推测,中新世早期向锯齿状冰川周期的温暖气候状态的长期转变是由渐新世晚期南极西部的沉降和冰川侵蚀以及/或者大气二氧化碳水平在天文时间尺度上的变率变化导致的,而现有代理重建尚未捕捉到这种变化。

相似文献

1
Evolution of the early Antarctic ice ages.
Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):3867-3872. doi: 10.1073/pnas.1615440114. Epub 2017 Mar 27.
3
Dynamic Antarctic ice sheet during the early to mid-Miocene.
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):3459-64. doi: 10.1073/pnas.1516130113. Epub 2016 Feb 22.
4
Thresholds for Cenozoic bipolar glaciation.
Nature. 2008 Oct 2;455(7213):652-6. doi: 10.1038/nature07337.
5
Initiation and long-term instability of the East Antarctic Ice Sheet.
Nature. 2017 Dec 13;552(7684):225-229. doi: 10.1038/nature25026.
6
Geological and geomorphological insights into Antarctic ice sheet evolution.
Philos Trans A Math Phys Eng Sci. 2006 Jul 15;364(1844):1607-25. doi: 10.1098/rsta.2006.1791.
7
Climate response to orbital forcing across the Oligocene-Miocene boundary.
Science. 2001 Apr 13;292(5515):274-8. doi: 10.1126/science.1058288.
8
A 40-million-year history of atmospheric CO(2).
Philos Trans A Math Phys Eng Sci. 2013 Sep 16;371(2001):20130096. doi: 10.1098/rsta.2013.0096. Print 2013 Oct 28.
9
Millennial-scale variability of the Antarctic ice sheet during the early Miocene.
Proc Natl Acad Sci U S A. 2023 Sep 26;120(39):e2304152120. doi: 10.1073/pnas.2304152120. Epub 2023 Sep 18.
10
The amplitude and origin of sea-level variability during the Pliocene epoch.
Nature. 2019 Oct;574(7777):237-241. doi: 10.1038/s41586-019-1619-z. Epub 2019 Oct 2.

引用本文的文献

1
Obliquity disruption and Antarctic ice sheet dynamics over a 2.4-Myr astronomical grand cycle.
Sci Adv. 2025 Apr 25;11(17):eadl1996. doi: 10.1126/sciadv.adl1996.
2
Eccentricity pacing and rapid termination of the early Antarctic ice ages.
Nat Commun. 2024 Dec 5;15(1):10600. doi: 10.1038/s41467-024-54186-1.
3
Biogeochemical Traits of a High Latitude South Pacific Ocean Calcareous Nannoplankton Community During the Oligocene.
Paleoceanogr Paleoclimatol. 2024 Dec;39(12):e2024PA004946. doi: 10.1029/2024PA004946. Epub 2024 Nov 28.
4
Do modern climatic niches distinguish extinct and extant plant genera in New Zealand?
Ecol Evol. 2024 Sep 3;14(9):e70133. doi: 10.1002/ece3.70133. eCollection 2024 Sep.
5
Tectonic and orbital forcing of the South Asian monsoon in central Tibet during the late Oligocene.
Proc Natl Acad Sci U S A. 2023 Apr 11;120(15):e2214558120. doi: 10.1073/pnas.2214558120. Epub 2023 Apr 3.
6
The genome of provides a new insight into cold tolerance and the evolutionary position of magnoliids.
Front Plant Sci. 2023 Feb 10;14:1108701. doi: 10.3389/fpls.2023.1108701. eCollection 2023.
7
Eccentricity-paced monsoon variability on the northeastern Tibetan Plateau in the Late Oligocene high CO world.
Sci Adv. 2021 Dec 17;7(51):eabk2318. doi: 10.1126/sciadv.abk2318. Epub 2021 Dec 15.
8
9
Asymmetry of extreme Cenozoic climate-carbon cycle events.
Sci Adv. 2021 Aug 11;7(33). doi: 10.1126/sciadv.abg6864. Print 2021 Aug.

本文引用的文献

1
Contribution of Antarctica to past and future sea-level rise.
Nature. 2016 Mar 31;531(7596):591-7. doi: 10.1038/nature17145.
2
Dynamic Antarctic ice sheet during the early to mid-Miocene.
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):3459-64. doi: 10.1073/pnas.1516130113. Epub 2016 Feb 22.
3
Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene.
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):3453-8. doi: 10.1073/pnas.1516030113. Epub 2016 Feb 22.
4
A 40-million-year history of atmospheric CO(2).
Philos Trans A Math Phys Eng Sci. 2013 Sep 16;371(2001):20130096. doi: 10.1098/rsta.2013.0096. Print 2013 Oct 28.
5
Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume.
Nature. 2013 Aug 8;500(7461):190-3. doi: 10.1038/nature12374.
6
Evolution of ocean temperature and ice volume through the mid-Pleistocene climate transition.
Science. 2012 Aug 10;337(6095):704-9. doi: 10.1126/science.1221294.
7
Thresholds for Cenozoic bipolar glaciation.
Nature. 2008 Oct 2;455(7213):652-6. doi: 10.1038/nature07337.
8
An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics.
Nature. 2008 Jan 17;451(7176):279-83. doi: 10.1038/nature06588.
9
The heartbeat of the Oligocene climate system.
Science. 2006 Dec 22;314(5807):1894-8. doi: 10.1126/science.1133822.
10
Long-period astronomical forcing of mammal turnover.
Nature. 2006 Oct 12;443(7112):687-91. doi: 10.1038/nature05163.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验