Molecular NanoFabrication and ‡NanoElectronics groups, MESA+ Institute for Nanotechnology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands.
Functional Nanomaterials and Surfaces and ∥Inorganic Materials and Catalysis groups, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Campus de la UAB, 08193, Bellaterra, Spain.
Langmuir. 2017 Apr 18;33(15):3635-3638. doi: 10.1021/acs.langmuir.7b00157. Epub 2017 Apr 3.
Monolayer contact doping (MLCD) is a modification of the monolayer doping (MLD) technique that involves monolayer formation of a dopant-containing adsorbate on a source substrate. This source substrate is subsequently brought into contact with the target substrate, upon which the dopant is driven into the target substrate by thermal annealing. Here, we report a modified MLCD process, in which we replace the commonly used Si source substrate by a thermally oxidized substrate with a 100 nm thick silicon oxide layer, functionalized with a monolayer of a dopant-containing silane. The thermal oxide potentially provides a better capping effect and effectively prevents the dopants from diffusing back into the source substrate. The use of easily accessible and processable silane monolayers provides access to a general and modifiable process for the introduction of dopants on the source substrate. As a proof of concept, a boron-rich carboranyl-alkoxysilane was used here to construct the monolayer that delivers the dopant, to boost the doping level in the target substrate. X-ray photoelectron spectroscopy (XPS) showed a successful grafting of the dopant adsorbate onto the SiO surface. The achieved doping levels after thermal annealing were similar to the doping levels acessible by MLD as demonstrated by secondary ion mass spectrometry measurements. The method shows good prospects, e.g. for use in the doping of Si nanostructures.
单层接触掺杂(MLCD)是对单层掺杂(MLD)技术的一种改进,涉及在源衬底上形成含掺杂剂的单层吸附物。随后,将该源衬底与目标衬底接触,通过热退火将掺杂剂驱入目标衬底。在这里,我们报告了一种改进的 MLCD 工艺,其中我们用具有 100nm 厚氧化硅层的热氧化衬底代替了常用的 Si 源衬底,该氧化硅层用含掺杂剂的硅烷单层进行了功能化。热氧化层可能提供更好的覆盖效果,并有效地防止掺杂剂回扩散到源衬底中。使用易于获得和处理的硅烷单层为在源衬底上引入掺杂剂提供了一种通用且可修改的方法。作为概念验证,这里使用富含硼的碳硼烷烷氧基硅烷来构建单层,以提供掺杂剂,从而提高目标衬底中的掺杂水平。X 射线光电子能谱(XPS)表明,掺杂吸附剂成功地接枝到 SiO 表面上。通过二次离子质谱测量,热退火后获得的掺杂水平与 MLD 可获得的掺杂水平相似。该方法显示出良好的前景,例如用于 Si 纳米结构的掺杂。