Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel.
Langmuir. 2017 Jun 6;33(22):5371-5377. doi: 10.1021/acs.langmuir.7b01085. Epub 2017 May 26.
The development of new doping methods extending beyond the traditional and well-established techniques is desired to match the rapid advances made in semiconductor (SC)-processing methods and nanostructure synthesis in numerous emerging applications, including the doping of 3D architectures. To address this, monolayer doping (MLD) and monolayer contact doping methods have been introduced recently. The MLD methods enable separation of the doping process of nanostructures from the synthesis step; hence, it is termed ex situ doping. Here, we present a new ex situ MLD method termed remote MLD (R-MLD). The noncontact doping method is based on the thermal fragmentation of dopant-containing monolayers and evaporation processes taking place during annealing of the uncapped monolayer dopant source positioned in proximity, however, without making physical contact with the target SC surface. We present a two-step annealing procedure that allows the study of the dopant monolayer fragmentation and evaporation stages and quantification of the doping levels obtained during each step. We demonstrate the application of R-MLD for achieving a large-scale direct patterning of silicon substrates with sharp doping profiles. The direct dopant patterning is obtained without applying lithographic processing steps to the target substrate. The noncontact doping process, monolayer decomposition, and fragment evaporation were studied using thermogravimetric analysis coupled with mass spectrometry and sheet resistance measurements. The doped patterns were characterized using scanning electron microscopy, scanning capacitance microscopy, and time-of-flight secondary ion mass spectroscopy.
为了匹配半导体 (SC) 处理方法和众多新兴应用中纳米结构合成的快速发展,超越传统和成熟的技术,需要开发新的掺杂方法。包括 3D 结构的掺杂。为此,最近引入了单层掺杂 (MLD) 和单层接触掺杂方法。MLD 方法能够将纳米结构的掺杂过程与合成步骤分离;因此,它被称为异位掺杂。在这里,我们提出了一种新的异位 MLD 方法,称为远程 MLD (R-MLD)。这种非接触掺杂方法基于含掺杂剂的单层的热断裂和在未覆盖的单层掺杂剂源退火过程中发生的蒸发过程,然而,与目标 SC 表面没有物理接触。我们提出了一种两步退火程序,允许研究掺杂剂单层的碎裂和蒸发阶段,并量化每个步骤中获得的掺杂水平。我们展示了 R-MLD 在实现具有尖锐掺杂轮廓的硅衬底的大规模直接图案化中的应用。直接掺杂图案化是在不对目标衬底施加光刻处理步骤的情况下获得的。使用热重分析 (TGA) 结合质谱 (MS) 和片电阻测量研究了非接触掺杂过程、单层分解和碎片蒸发。使用扫描电子显微镜 (SEM)、扫描电容显微镜 (SCM) 和飞行时间二次离子质谱 (ToF-SIMS) 对掺杂图案进行了表征。