Ye Liang, Pujari Sidharam P, Zuilhof Han, Kudernac Tibor, de Jong Michel P, van der Wiel Wilfred G, Huskens Jurriaan
Molecular NanoFabrication group, MESA+ Institute for Nanotechnology and ‡NanoElectronics Group, MESA+ Institute for Nanotechnology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands.
ACS Appl Mater Interfaces. 2015 Feb 11;7(5):3231-6. doi: 10.1021/am5079368. Epub 2015 Jan 29.
Molecular monolayer doping (MLD) presents an alternative to achieve doping of silicon in a nondestructive way and holds potential for realizing ultrashallow junctions and doping of nonplanar surfaces. Here, we report the mixing of dopant-containing alkenes with alkenes that lack this functionality at various ratios to control the dopant concentration in the resulting monolayer and concomitantly the dopant dose in the silicon substrate. The mixed monolayers were grafted onto hydrogen-terminated silicon using well-established hydrosilylation chemistry. Contact angle measurements, X-ray photon spectroscopy (XPS) on the boron-containing monolayers, and Auger electron spectroscopy on the phosphorus-containing monolayers show clear trends as a function of the dopant-containing alkene concentration. Dynamic secondary-ion mass spectroscopy (D-SIMS) and Van der Pauw resistance measurements on the in-diffused samples show an effective tuning of the doping concentration in silicon.
分子单层掺杂(MLD)提供了一种以无损方式实现硅掺杂的替代方法,并具有实现超浅结和非平面表面掺杂的潜力。在此,我们报告了将含掺杂剂的烯烃与缺乏该功能的烯烃以各种比例混合,以控制所得单层中的掺杂剂浓度,并随之控制硅衬底中的掺杂剂量。使用成熟的硅氢化化学方法将混合单层接枝到氢端接的硅上。对含硼单层进行的接触角测量、X射线光子能谱(XPS)以及对含磷单层进行的俄歇电子能谱显示出随含掺杂剂烯烃浓度变化的明显趋势。对扩散样品进行的动态二次离子质谱(D-SIMS)和范德堡电阻测量表明,硅中的掺杂浓度得到了有效调节。