Leisegang Matthias S, Fork Christian, Josipovic Ivana, Richter Florian Martin, Preussner Jens, Hu Jiong, Miller Matthew J, Epah Jeremy, Hofmann Patrick, Günther Stefan, Moll Franziska, Valasarajan Chanil, Heidler Juliana, Ponomareva Yuliya, Freiman Thomas M, Maegdefessel Lars, Plate Karl H, Mittelbronn Michel, Uchida Shizuka, Künne Carsten, Stellos Konstantinos, Schermuly Ralph T, Weissmann Norbert, Devraj Kavi, Wittig Ilka, Boon Reinier A, Dimmeler Stefanie, Pullamsetti Soni Savai, Looso Mario, Miller Francis J, Brandes Ralf P
From Institute for Cardiovascular Physiology (M.S.L., C.F., I.J., M.J.M., J.E., F.M., R.P.B.), Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine (F.M.R., J.H., I.W.), Institute of Vascular Signalling (J.H.), Institute of Cardiovascular Regeneration (P.H. Y.P., S.U., K.S., R.A.B., S.D.), Department of Neurosurgery (T.M.F.), Pharmazentrum Frankfurt, Institute of General Pharmacology and Toxicology (K.D.), Goethe University, Germany; ECCPS Bioinformatics and Sequencing Facility (J.P., S.G., C.K., M.L.) and Department of Lung Development and Remodeling (C.V., S.S.P.), Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany; Institute of Neurology (K.H.P., M.M., K.D.); Department of Vascular and Endovascular Surgery, Klinikum Rechts der Isar, Technical University Munich, Germany (L.M.); Luxembourg Centre of Neuropathology (M.M.); Laboratoire National de Santé, Dudelange, Luxembourg (M.M.); Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette (M.M.); NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (M.M.); Cardiovascular Innovation Institute, University of Louisville, KY (S.U.); Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany (R.T.S., N.W., S.S.P.); Department of Medicine, Duke University and Durham VA Medical Center, NC (F.J.M.); and German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany (M.S.L., C.F., I.J., J.H., J.E., P.H., F.M., Y.P., K.H.P., K.S., I.W., R.A.B., S.D., R.P.B.).
Circulation. 2017 Jul 4;136(1):65-79. doi: 10.1161/CIRCULATIONAHA.116.026991. Epub 2017 Mar 28.
The angiogenic function of endothelial cells is regulated by numerous mechanisms, but the impact of long noncoding RNAs (lncRNAs) has hardly been studied. We set out to identify novel and functionally important endothelial lncRNAs.
Epigenetically controlled lncRNAs in human umbilical vein endothelial cells were searched by exon-array analysis after knockdown of the histone demethylase JARID1B. Molecular mechanisms were investigated by RNA pulldown and immunoprecipitation, mass spectrometry, microarray, several knockdown approaches, CRISPR-Cas9, assay for transposase-accessible chromatin sequencing, and chromatin immunoprecipitation in human umbilical vein endothelial cells. Patient samples from lung and tumors were studied for MANTIS expression.
A search for epigenetically controlled endothelial lncRNAs yielded lncRNA n342419, here termed MANTIS, as the most strongly regulated lncRNA. Controlled by the histone demethylase JARID1B, MANTIS was downregulated in patients with idiopathic pulmonary arterial hypertension and in rats treated with monocrotaline, whereas it was upregulated in carotid arteries of subjected to atherosclerosis regression diet, and in endothelial cells isolated from human glioblastoma patients. CRISPR/Cas9-mediated deletion or silencing of MANTIS with small interfering RNAs or GapmeRs inhibited angiogenic sprouting and alignment of endothelial cells in response to shear stress. Mechanistically, the nuclear-localized MANTIS lncRNA interacted with BRG1, the catalytic subunit of the switch/sucrose nonfermentable chromatin-remodeling complex. This interaction was required for nucleosome remodeling by keeping the ATPase function of BRG1 active. Thereby, the transcription of key endothelial genes such as , , and was regulated by ensuring efficient RNA polymerase II machinery binding.
MANTIS is a differentially regulated novel lncRNA facilitating endothelial angiogenic function.
内皮细胞的血管生成功能受多种机制调控,但长链非编码RNA(lncRNA)的影响鲜有研究。我们旨在鉴定新的且具有重要功能的内皮lncRNA。
在组蛋白去甲基化酶JARID1B敲低后,通过外显子阵列分析在人脐静脉内皮细胞中搜索受表观遗传控制的lncRNA。通过RNA下拉和免疫沉淀、质谱分析、微阵列、多种敲低方法、CRISPR-Cas9、转座酶可及染色质测序分析以及人脐静脉内皮细胞中的染色质免疫沉淀来研究分子机制。对来自肺部和肿瘤的患者样本进行MANTIS表达研究。
对受表观遗传控制的内皮lncRNA的搜索产生了lncRNA n342419,此处称为MANTIS,它是调控最强的lncRNA。受组蛋白去甲基化酶JARID1B调控,MANTIS在特发性肺动脉高压患者和用野百合碱处理的大鼠中表达下调,而在接受动脉粥样硬化消退饮食的大鼠颈动脉以及从人胶质母细胞瘤患者分离的内皮细胞中表达上调。用小干扰RNA或GapmeR通过CRISPR/Cas9介导的MANTIS缺失或沉默抑制了内皮细胞对剪切应力的血管生成芽生和排列。机制上,核定位的MANTIS lncRNA与开关/蔗糖非发酵染色质重塑复合物的催化亚基BRG1相互作用。这种相互作用通过保持BRG1的ATP酶功能活性来实现核小体重塑所必需。从而,通过确保有效的RNA聚合酶II机制结合来调控关键内皮基因如 、 和 的转录。
MANTIS是一种差异调控的新型lncRNA,可促进内皮血管生成功能。