Suppr超能文献

大数据驱动的建模揭示了全国范围内血吸虫病的地方性驱动因素。

Big-data-driven modeling unveils country-wide drivers of endemic schistosomiasis.

机构信息

Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milano, IT, 20133, Italy.

Ministère de la Santé et de l'Action Sociale, Dakar, BP, 4024, Senegal.

出版信息

Sci Rep. 2017 Mar 28;7(1):489. doi: 10.1038/s41598-017-00493-1.

Abstract

Schistosomiasis is a parasitic infection that is widespread in sub-Saharan Africa, where it represents a major health problem. We study the drivers of its geographical distribution in Senegal via a spatially explicit network model accounting for epidemiological dynamics driven by local socioeconomic and environmental conditions, and human mobility. The model is parameterized by tapping several available geodatabases and a large dataset of mobile phone traces. It reliably reproduces the observed spatial patterns of regional schistosomiasis prevalence throughout the country, provided that spatial heterogeneity and human mobility are suitably accounted for. Specifically, a fine-grained description of the socioeconomic and environmental heterogeneities involved in local disease transmission is crucial to capturing the spatial variability of disease prevalence, while the inclusion of human mobility significantly improves the explanatory power of the model. Concerning human movement, we find that moderate mobility may reduce disease prevalence, whereas either high or low mobility may result in increased prevalence of infection. The effects of control strategies based on exposure and contamination reduction via improved access to safe water or educational campaigns are also analyzed. To our knowledge, this represents the first application of an integrative schistosomiasis transmission model at a whole-country scale.

摘要

血吸虫病是一种寄生虫感染,在撒哈拉以南非洲广泛流行,是一个主要的卫生问题。我们通过一个空间显式网络模型研究了塞内加尔血吸虫病地理分布的驱动因素,该模型考虑了由当地社会经济和环境条件以及人类流动驱动的流行病学动态。该模型通过利用多个可用地理数据库和大量移动电话轨迹数据集进行参数化。只要适当考虑空间异质性和人类流动,该模型就能可靠地再现全国范围内血吸虫病流行的观察到的空间模式。具体来说,对涉及当地疾病传播的社会经济和环境异质性进行精细描述,对于捕捉疾病流行的空间变异性至关重要,而人类流动的纳入则显著提高了模型的解释能力。关于人类运动,我们发现适度的流动性可能会降低疾病的流行率,而高或低的流动性可能会导致感染率上升。还分析了基于改善获得安全用水或教育运动来减少暴露和污染的控制策略的效果。据我们所知,这是首次在全国范围内应用综合血吸虫病传播模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f4f/5428445/f54bfd705fbf/41598_2017_493_Fig1_HTML.jpg

相似文献

1
Big-data-driven modeling unveils country-wide drivers of endemic schistosomiasis.
Sci Rep. 2017 Mar 28;7(1):489. doi: 10.1038/s41598-017-00493-1.
2
Heterogeneity in schistosomiasis transmission dynamics.
J Theor Biol. 2017 Nov 7;432:87-99. doi: 10.1016/j.jtbi.2017.08.015. Epub 2017 Aug 17.
5
Modeling and Validation of Environmental Suitability for Schistosomiasis Transmission Using Remote Sensing.
PLoS Negl Trop Dis. 2015 Nov 20;9(11):e0004217. doi: 10.1371/journal.pntd.0004217. eCollection 2015 Nov.
10
Dynamics of spatiotemporal distribution of schistosomiasis in Hubei Province, China.
Acta Trop. 2018 Apr;180:88-96. doi: 10.1016/j.actatropica.2018.01.004. Epub 2018 Jan 10.

引用本文的文献

1
Improving mobility data for infectious disease research.
Nat Hum Behav. 2025 Mar 24. doi: 10.1038/s41562-025-02151-3.
3
Socioeconomic reorganization of communication and mobility networks in response to external shocks.
Proc Natl Acad Sci U S A. 2023 Dec 12;120(50):e2305285120. doi: 10.1073/pnas.2305285120. Epub 2023 Dec 7.
4
A stratified compartmental model for the transmission of (Platyhelminthes: Monogenea) in gilthead seabream () fish farms.
R Soc Open Sci. 2023 May 17;10(5):221377. doi: 10.1098/rsos.221377. eCollection 2023 May.
5
Determinants of malaria infections among children in refugee settlements in Uganda during 2018-2019.
Infect Dis Poverty. 2023 Apr 10;12(1):31. doi: 10.1186/s40249-023-01090-3.
6
Characterising spatial patterns of neglected tropical disease transmission using integrated sero-surveillance in Northern Ghana.
PLoS Negl Trop Dis. 2022 Mar 8;16(3):e0010227. doi: 10.1371/journal.pntd.0010227. eCollection 2022 Mar.
7
Do regionally targeted lockdowns alter movement to non-lockdown regions? Evidence from Ontario, Canada.
Health Place. 2023 Jan;79:102668. doi: 10.1016/j.healthplace.2021.102668. Epub 2021 Sep 20.
8
Characterizing human mobility patterns in rural settings of sub-Saharan Africa.
Elife. 2021 Sep 17;10:e68441. doi: 10.7554/eLife.68441.
9
MALDI-TOF mass spectrometry for the identification of freshwater snails from Senegal, including intermediate hosts of schistosomes.
PLoS Negl Trop Dis. 2021 Sep 13;15(9):e0009725. doi: 10.1371/journal.pntd.0009725. eCollection 2021 Sep.
10
Spatial scales in human movement between reservoirs of infection.
J Theor Biol. 2021 Sep 7;524:110726. doi: 10.1016/j.jtbi.2021.110726. Epub 2021 Apr 23.

本文引用的文献

1
The spatial spread of schistosomiasis: A multidimensional network model applied to Saint-Louis region, Senegal.
Adv Water Resour. 2017 Oct;108:406-415. doi: 10.1016/j.advwatres.2016.10.012.
3
4
Mapping intra-urban transmission risk of dengue fever with big hourly cellphone data.
Acta Trop. 2016 Oct;162:188-195. doi: 10.1016/j.actatropica.2016.06.029. Epub 2016 Jun 27.
5
Mobile phone data highlights the role of mass gatherings in the spreading of cholera outbreaks.
Proc Natl Acad Sci U S A. 2016 Jun 7;113(23):6421-6. doi: 10.1073/pnas.1522305113. Epub 2016 May 23.
6
Hydrology and density feedbacks control the ecology of intermediate hosts of schistosomiasis across habitats in seasonal climates.
Proc Natl Acad Sci U S A. 2016 Jun 7;113(23):6427-32. doi: 10.1073/pnas.1602251113. Epub 2016 May 9.
7
Unveiling Spatial Epidemiology of HIV with Mobile Phone Data.
Sci Rep. 2016 Jan 13;6:19342. doi: 10.1038/srep19342.
9
Impact of human mobility on the emergence of dengue epidemics in Pakistan.
Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11887-92. doi: 10.1073/pnas.1504964112. Epub 2015 Sep 8.
10
Quantifying seasonal population fluxes driving rubella transmission dynamics using mobile phone data.
Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):11114-9. doi: 10.1073/pnas.1423542112. Epub 2015 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验