Michael Edwin, Singh Brajendra K, Mayala Benjamin K, Smith Morgan E, Hampton Scott, Nabrzyski Jaroslaw
Department of Biological Sciences, University of Notre Dame, Galvin Life Science Center, Notre Dame, IN, 46556, USA.
Center for Research Computing, University of Notre Dame, Notre Dame, IN, 46556, USA.
BMC Med. 2017 Sep 27;15(1):176. doi: 10.1186/s12916-017-0933-2.
There are growing demands for predicting the prospects of achieving the global elimination of neglected tropical diseases as a result of the institution of large-scale nation-wide intervention programs by the WHO-set target year of 2020. Such predictions will be uncertain due to the impacts that spatial heterogeneity and scaling effects will have on parasite transmission processes, which will introduce significant aggregation errors into any attempt aiming to predict the outcomes of interventions at the broader spatial levels relevant to policy making. We describe a modeling platform that addresses this problem of upscaling from local settings to facilitate predictions at regional levels by the discovery and use of locality-specific transmission models, and we illustrate the utility of using this approach to evaluate the prospects for eliminating the vector-borne disease, lymphatic filariasis (LF), in sub-Saharan Africa by the WHO target year of 2020 using currently applied or newly proposed intervention strategies. METHODS AND RESULTS: We show how a computational platform that couples site-specific data discovery with model fitting and calibration can allow both learning of local LF transmission models and simulations of the impact of interventions that take a fuller account of the fine-scale heterogeneous transmission of this parasitic disease within endemic countries. We highlight how such a spatially hierarchical modeling tool that incorporates actual data regarding the roll-out of national drug treatment programs and spatial variability in infection patterns into the modeling process can produce more realistic predictions of timelines to LF elimination at coarse spatial scales, ranging from district to country to continental levels. Our results show that when locally applicable extinction thresholds are used, only three countries are likely to meet the goal of LF elimination by 2020 using currently applied mass drug treatments, and that switching to more intensive drug regimens, increasing the frequency of treatments, or switching to new triple drug regimens will be required if LF elimination is to be accelerated in Africa. The proportion of countries that would meet the goal of eliminating LF by 2020 may, however, reach up to 24/36 if the WHO 1% microfilaremia prevalence threshold is used and sequential mass drug deliveries are applied in countries.
We have developed and applied a data-driven spatially hierarchical computational platform that uses the discovery of locally applicable transmission models in order to predict the prospects for eliminating the macroparasitic disease, LF, at the coarser country level in sub-Saharan Africa. We show that fine-scale spatial heterogeneity in local parasite transmission and extinction dynamics, as well as the exact nature of intervention roll-outs in countries, will impact the timelines to achieving national LF elimination on this continent.
由于世界卫生组织设定的到2020年在全球范围内消除被忽视热带病的目标,以及各国大规模开展全国性干预项目,预测实现这一目标的前景的需求日益增长。由于空间异质性和尺度效应会对寄生虫传播过程产生影响,这类预测存在不确定性,这将给任何旨在预测与政策制定相关的更广泛空间层面干预结果的尝试带来显著的聚集误差。我们描述了一个建模平台,该平台通过发现和使用特定地点的传播模型来解决从局部环境向上扩展的问题,以促进区域层面的预测,并且我们举例说明了使用这种方法来评估到2020年世界卫生组织目标年份时在撒哈拉以南非洲消除媒介传播疾病淋巴丝虫病(LF)的前景,其中使用了当前应用的或新提出的干预策略。
我们展示了一个将特定地点的数据发现与模型拟合及校准相结合的计算平台如何能够既学习局部LF传播模型,又能模拟干预措施的影响,这种模拟更全面地考虑了该寄生虫病在流行国家内精细尺度的异质传播情况。我们强调了这样一种空间分层建模工具,它将关于国家药物治疗项目推广的实际数据以及感染模式的空间变异性纳入建模过程,如何能够在从地区到国家再到大陆层面的粗略空间尺度上,对LF消除的时间线做出更现实的预测。我们的结果表明,当使用局部适用的灭绝阈值时,仅三个国家在2020年使用当前应用的大规模药物治疗有可能实现LF消除目标,并且如果要在非洲加速LF消除,将需要转向更强化的药物治疗方案、增加治疗频率或转向新的三联药物治疗方案。然而,如果使用世界卫生组织1%的微丝蚴血症患病率阈值并在各国进行连续大规模药物投放,到2020年实现LF消除目标的国家比例可能高达24/36。
我们开发并应用了一个数据驱动的空间分层计算平台,该平台利用发现局部适用的传播模型来预测在撒哈拉以南非洲更粗略的国家层面消除大型寄生虫病LF的前景。我们表明,局部寄生虫传播和灭绝动态中的精细尺度空间异质性,以及各国干预措施推广的具体性质,将影响在该大陆实现国家LF消除的时间线。