Institute for Molecular Cell Biology, Research Centre for Molecular Imaging and Screening, Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, Homburg/Saar, Germany.
NCCR Chemical Biology, Departments of Biochemistry and Theoretical Physics, University of Geneva, 30 quai Ernest-Ansermet, 1211, Geneva, Switzerland.
Sci Rep. 2017 Mar 28;7(1):475. doi: 10.1038/s41598-017-00560-7.
Translocation of cytosolic cPKC to the plasma membrane is a key event in their activation process but its exact nature is still unclear with particular dispute whether sole diffusion or additional active transport along the cell's cytoskeleton contributes to cPKC's dynamics. This was addressed by analyzing the recruitment behavior of PKCα while manipulating the cytoskeleton. Photolytic Ca uncaging allowed us to quantify the kinetics of PKCα redistribution to the plasma membrane when fused to monomeric, dimeric and tetrameric fluorescence proteins. Results indicated that translocation kinetics were modulated by the state of oligomerization as expected for varying Stokes' radii of the participating proteins. Following depolymerization of the microtubules and the actin filaments we found that Ca induced membrane accumulation of PKCα was independent of the filamentous state of the cytoskeleton. Fusion of PKCα to the photo-convertible fluorescent protein Dendra2 enabled the investigation of PKCα-cytoskeleton interactions under resting conditions. Redistribution following spatially restricted photoconversion showed that the mobility of the fusion protein was independent of the state of the cytoskeleton. Our data demonstrated that in living cells neither actin filaments nor microtubules contribute to PKCα's cytosolic mobility or Ca-induced translocation to the plasma membrane. Instead translocation is a solely diffusion-driven process.
细胞质 cPKC 向质膜的易位是其激活过程中的一个关键事件,但确切性质仍不清楚,特别是关于 cPKC 动力学是否仅通过扩散或沿着细胞骨架的主动运输来贡献存在争议。通过分析 PKCα 的募集行为并操纵细胞骨架来解决这个问题。光解 Ca2+ 去笼允许我们量化当 PKCα 融合到单体、二聚体和四聚体荧光蛋白时向质膜重新分布的动力学。结果表明,易位动力学受寡聚状态调节,如参与蛋白的斯托克斯半径变化所预期的那样。微管和肌动蛋白丝解聚后,我们发现 Ca2+ 诱导的 PKCα 向质膜的积累与细胞骨架的丝状状态无关。将 PKCα 融合到光可转化的荧光蛋白 Dendra2 上,使我们能够在休息状态下研究 PKCα-细胞骨架相互作用。空间受限的光转化后的再分配表明融合蛋白的流动性与细胞骨架的状态无关。我们的数据表明,在活细胞中,肌动蛋白丝和微管都不会促进 PKCα 的细胞质流动性或 Ca2+ 诱导的向质膜易位。相反,易位是一个纯粹的扩散驱动过程。