Suppr超能文献

生物素包被的发光量子点与单域抗体-根瘤菌抗生物素蛋白融合体的偶联。

Conjugation of biotin-coated luminescent quantum dots with single domain antibody-rhizavidin fusions.

作者信息

Liu Jinny L, Walper Scott A, Turner Kendrick B, Lee Audrey Brozozog, Medintz Igor L, Susumu Kimihiro, Oh Eunkeu, Zabetakis Dan, Goldman Ellen R, Anderson George P

机构信息

Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, 4555 Overlook Ave SW, Washington DC 20375, USA.

NOVA Research Inc., 1900 Elkin St Suite 230, Alexandria, VA 22308, USA.

出版信息

Biotechnol Rep (Amst). 2016 Mar 3;10:56-65. doi: 10.1016/j.btre.2016.03.001. eCollection 2016 Jun.

Abstract

Straightforward and effective methods are required for the bioconjugation of proteins to surfaces and particles. Previously we demonstrated that the fusion of a single domain antibody with the biotin binding molecule rhizavidin provided a facile method to coat biotin-modified surfaces with a highly active and oriented antibody. Here, we constructed similar single domain antibody-rhizavidin fusions as well as unfused rhizavidin with a His-tag. The unfused rhizavidin produced efficiently and its utility for assay development was demonstrated in surface plasmon resonance experiments. The single domain antibody-rhizavidin fusions were utilized to coat quantum dots that had been prepared with surface biotins. Preparation of antibody coated quantum dots by this means was found to be both easy and effective. The prepared single domain antibody-quantum dot reagent was characterized by surface plasmon resonance and applied to toxin detection in a fluoroimmunoassay sensing format.

摘要

蛋白质与表面及颗粒的生物偶联需要直接有效的方法。此前我们证明,将单域抗体与生物素结合分子根瘤菌素融合,提供了一种用高活性且定向的抗体包被生物素修饰表面的简便方法。在此,我们构建了类似的单域抗体 - 根瘤菌素融合体以及带有组氨酸标签的未融合根瘤菌素。未融合的根瘤菌素高效产生,并且其在分析方法开发中的效用在表面等离子体共振实验中得到了证明。单域抗体 - 根瘤菌素融合体用于包被已用表面生物素制备的量子点。通过这种方式制备抗体包被的量子点既简单又有效。所制备的单域抗体 - 量子点试剂通过表面等离子体共振进行表征,并应用于荧光免疫分析传感形式的毒素检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5eb9/5040863/3f0293221184/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验