Suppr超能文献

大肠杆菌[NiFe] - 氢化酶辅助蛋白HypB的高亲和力金属结合受到SlyD的选择性调节。

High-affinity metal binding by the Escherichia coli [NiFe]-hydrogenase accessory protein HypB is selectively modulated by SlyD.

作者信息

Khorasani-Motlagh Mozhgan, Lacasse Michael J, Zamble Deborah B

机构信息

Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.

出版信息

Metallomics. 2017 May 24;9(5):482-493. doi: 10.1039/c7mt00037e.

Abstract

[NiFe]-hydrogenase, which catalyzes the reversible conversion between hydrogen gas and protons, is a vital component of the metabolism of many pathogens. Maturation of [NiFe]-hydrogenase requires selective nickel insertion that is completed, in part, by the metallochaperones SlyD and HypB. Escherichia coli HypB binds nickel with sub-picomolar affinity, and the formation of the HypB-SlyD complex activates nickel release from the high-affinity site (HAS) of HypB. In this study, the metal selectivity of this process was investigated. Biochemical experiments revealed that the HAS of full length HypB can bind stoichiometric zinc. Moreover, in contrast to the acceleration of metal release observed with nickel-loaded HypB, SlyD blocks the release of zinc from the HypB HAS. X-ray absorption spectroscopy (XAS) demonstrated that SlyD does not impact the primary coordination sphere of nickel or zinc bound to the HAS of HypB. Instead, computational modeling and XAS of HypB loaded with nickel or zinc indicated that zinc binds to HypB with a different coordination sphere than nickel. The data suggested that Glu9, which is not a nickel ligand, directly coordinates zinc. These results were confirmed through the characterization of E9A-HypB, which afforded weakened zinc affinity compared to wild-type HypB but similar nickel affinity. This mutant HypB fully supports the production of [NiFe]-hydrogenase in E. coli. Altogether, these results are consistent with the model that the HAS of HypB functions as a nickel site during [NiFe]-hydrogenase enzyme maturation and that the metal selectivity is controlled by activation of metal release by SlyD.

摘要

[NiFe]氢化酶催化氢气与质子之间的可逆转化,是许多病原体新陈代谢的重要组成部分。[NiFe]氢化酶的成熟需要选择性插入镍,这一过程部分由金属伴侣蛋白SlyD和HypB完成。大肠杆菌HypB以亚皮摩尔亲和力结合镍,HypB-SlyD复合物的形成激活了镍从HypB高亲和力位点(HAS)的释放。在本研究中,对这一过程的金属选择性进行了研究。生化实验表明,全长HypB的HAS可以结合化学计量的锌。此外,与镍负载的HypB观察到的金属释放加速相反,SlyD阻断了锌从HypB HAS的释放。X射线吸收光谱(XAS)表明,SlyD不会影响与HypB的HAS结合的镍或锌的第一配位层。相反,对负载镍或锌的HypB进行的计算建模和XAS表明,锌与HypB结合的配位层与镍不同。数据表明,不是镍配体的Glu9直接配位锌。通过对E9A-HypB的表征证实了这些结果,与野生型HypB相比,E9A-HypB的锌亲和力减弱,但镍亲和力相似。这种突变体HypB完全支持大肠杆菌中[NiFe]氢化酶的产生。总之,这些结果与以下模型一致:在[NiFe]氢化酶成熟过程中,HypB的HAS作为镍位点起作用,并且金属选择性由SlyD激活金属释放来控制。

相似文献

2
The role of complex formation between the Escherichia coli hydrogenase accessory factors HypB and SlyD.
J Biol Chem. 2007 Jun 1;282(22):16177-86. doi: 10.1074/jbc.M610834200. Epub 2007 Apr 10.
3
Nickel binding and [NiFe]-hydrogenase maturation by the metallochaperone SlyD with a single metal-binding site in Escherichia coli.
J Mol Biol. 2012 Mar 16;417(1-2):28-35. doi: 10.1016/j.jmb.2012.01.037. Epub 2012 Jan 30.
4
The Escherichia coli metal-binding chaperone SlyD interacts with the large subunit of [NiFe]-hydrogenase 3.
FEBS Lett. 2011 Jan 21;585(2):291-4. doi: 10.1016/j.febslet.2010.12.024. Epub 2010 Dec 23.
5
Metal specificity of the Ni(II) and Zn(II) binding sites of the N-terminal and G-domain of HypB.
Dalton Trans. 2021 Sep 21;50(36):12635-12647. doi: 10.1039/d1dt02126e.
6
Mechanism of Selective Nickel Transfer from HypB to HypA, Escherichia coli [NiFe]-Hydrogenase Accessory Proteins.
Biochemistry. 2016 Dec 13;55(49):6821-6831. doi: 10.1021/acs.biochem.6b00706. Epub 2016 Nov 30.
7
Escherichia coli SlyD, more than a Ni(II) reservoir.
Biochemistry. 2011 Dec 20;50(50):10761-3. doi: 10.1021/bi201590d. Epub 2011 Nov 18.
8
Complex formation between the Escherichia coli [NiFe]-hydrogenase nickel maturation factors.
Biometals. 2019 Jun;32(3):521-532. doi: 10.1007/s10534-019-00173-9. Epub 2019 Feb 13.
9
Structural and biological analysis of the metal sites of Escherichia coli hydrogenase accessory protein HypB.
Biochemistry. 2008 Nov 18;47(46):11981-91. doi: 10.1021/bi801337x. Epub 2008 Oct 23.
10
Metal binding activity of the Escherichia coli hydrogenase maturation factor HypB.
Biochemistry. 2005 Sep 13;44(36):12229-38. doi: 10.1021/bi050993j.

引用本文的文献

3
Positive charges promote the recognition of proteins by the chaperone SlyD from Escherichia coli.
PLoS One. 2024 Jun 25;19(6):e0305823. doi: 10.1371/journal.pone.0305823. eCollection 2024.
5
Principles and practice of determining metal-protein affinities.
Biochem J. 2021 Mar 12;478(5):1085-1116. doi: 10.1042/BCJ20200838.
6
Structure, function, and biosynthesis of nickel-dependent enzymes.
Protein Sci. 2020 May;29(5):1071-1089. doi: 10.1002/pro.3836. Epub 2020 Feb 18.
7
Bimodal Nickel-Binding Site on [NiFe]-Hydrogenase Metallochaperone HypA.
Inorg Chem. 2019 Oct 21;58(20):13604-13618. doi: 10.1021/acs.inorgchem.9b00897. Epub 2019 Jul 5.
9
Proteolytic cleavage orchestrates cofactor insertion and protein assembly in [NiFe]-hydrogenase biosynthesis.
J Biol Chem. 2017 Jul 14;292(28):11670-11681. doi: 10.1074/jbc.M117.788125. Epub 2017 May 24.

本文引用的文献

1
Microbial nickel: cellular uptake and delivery to enzyme centers.
Curr Opin Chem Biol. 2017 Apr;37:80-88. doi: 10.1016/j.cbpa.2017.01.014. Epub 2017 Feb 16.
2
Mechanism of Selective Nickel Transfer from HypB to HypA, Escherichia coli [NiFe]-Hydrogenase Accessory Proteins.
Biochemistry. 2016 Dec 13;55(49):6821-6831. doi: 10.1021/acs.biochem.6b00706. Epub 2016 Nov 30.
3
Anaerobic Formate and Hydrogen Metabolism.
EcoSal Plus. 2016 Oct;7(1). doi: 10.1128/ecosalplus.ESP-0011-2016.
4
[NiFe]-Hydrogenase Maturation.
Biochemistry. 2016 Mar 29;55(12):1689-701. doi: 10.1021/acs.biochem.5b01328. Epub 2016 Mar 14.
5
Transition Metal Homeostasis.
EcoSal Plus. 2009 Aug;3(2). doi: 10.1128/ecosalplus.5.4.4.3.
6
Structural basis of a Ni acquisition cycle for [NiFe] hydrogenase by Ni-metallochaperone HypA and its enhancer.
Proc Natl Acad Sci U S A. 2015 Jun 23;112(25):7701-6. doi: 10.1073/pnas.1503102112. Epub 2015 Jun 8.
7
Host-specific induction of Escherichia coli fitness genes during human urinary tract infection.
Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):18327-32. doi: 10.1073/pnas.1415959112. Epub 2014 Dec 8.
8
Metal preferences and metallation.
J Biol Chem. 2014 Oct 10;289(41):28095-103. doi: 10.1074/jbc.R114.588145. Epub 2014 Aug 26.
9
Hydrogenases.
Chem Rev. 2014 Apr 23;114(8):4081-148. doi: 10.1021/cr4005814. Epub 2014 Mar 21.
10
Recent developments in copper and zinc homeostasis in bacterial pathogens.
Curr Opin Chem Biol. 2014 Apr;19:59-66. doi: 10.1016/j.cbpa.2013.12.021. Epub 2014 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验