Kramer R H, Levitan E S, Wilson M P, Levitan I B
Graduate Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02254.
J Neurosci. 1988 May;8(5):1804-13. doi: 10.1523/JNEUROSCI.08-05-01804.1988.
In the preceding paper (Kramer and Levitan, 1988), we presented evidence that an inwardly rectifying K+ current (IR) is inactivated by Ca2+ influx accompanying spontaneous bursting activity in the Aplysia neuron R15. In this paper we examine the mechanism that enables Ca2+ to inactivate IR. Since IR is enhanced by cyclic AMP in neuron R15 (Drummond et al., 1980; Benson and Levitan, 1983), we examined the Ca2+-dependent inactivation of IR after application of either serotonin (5-HT), the adenylate cyclase activator forskolin, or a membrane-permeable cAMP analog, all agents that increase cAMP and hence the magnitude of IR. Even though more active IR channels are available under these conditions, less Ca2+-dependent inactivation is observed. This is contrasted with the Ca2+-dependent inactivation of the voltage-gated Ca2+ current (ICa). Elevating cAMP enhances ICa in R15 and also increases its Ca2+-dependent inactivation. Hence the mechanisms whereby Ca2+ inactivates IR and ICa appear to differ from each other. Elevating internal Ca2+ by repeatedly depolarizing the neuron suppresses the response of IR to brief applications of 5-HT, and speeds the relaxation of the response, suggesting that Ca2+ can interfere with the cAMP-dependent activation of IR. One biochemical site where Ca2+ can reduce cellular cAMP is by activating the Ca2+/calmodulin-sensitive form of phosphodiesterase. We have detected such enzyme activity in homogenates of Aplysia abdominal ganglia and extracts of single R15 somata. Inhibitors of the phosphodiesterase activity suppress the Ca2+-dependent inactivation of IR. Finally, we have used a radioimmunoassay to measure cAMP in individual R15 somata, and have found that R15 neurons hyperpolarized for prolonged periods contain more cAMP than do R15 neurons allowed to burst, consistent with the hypothesis that Ca2+ influx reduces cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)
在前一篇论文(克莱默和莱维坦,1988年)中,我们提出证据表明,伴随海兔神经元R15自发爆发活动的Ca2+内流会使内向整流钾电流(IR)失活。在本文中,我们研究了使Ca2+能够使IR失活的机制。由于IR在神经元R15中会被环磷酸腺苷(cAMP)增强(德拉蒙德等人,1980年;本森和莱维坦,1983年),我们在应用血清素(5-羟色胺,5-HT)、腺苷酸环化酶激活剂福斯高林或膜通透性cAMP类似物后,研究了IR的Ca2+依赖性失活,所有这些试剂都会增加cAMP,从而增加IR的幅度。尽管在这些条件下有更多活跃的IR通道,但观察到的Ca2+依赖性失活较少。这与电压门控钙电流(ICa)的Ca2+依赖性失活形成对比。提高cAMP会增强R15中的ICa,同时也会增加其Ca2+依赖性失活。因此,Ca2+使IR和ICa失活的机制似乎彼此不同。通过反复使神经元去极化来提高细胞内Ca2+会抑制IR对5-HT短暂应用的反应,并加速反应的松弛,这表明Ca2+可以干扰cAMP依赖性的IR激活。Ca2+可以降低细胞内cAMP的一个生化位点是通过激活磷酸二酯酶的Ca2+/钙调蛋白敏感形式。我们在海兔腹神经节匀浆和单个R15细胞体提取物中检测到了这种酶活性。磷酸二酯酶活性抑制剂会抑制IR的Ca2+依赖性失活。最后,我们使用放射免疫测定法测量单个R15细胞体中的cAMP,发现长时间超极化的R15神经元比允许爆发的R15神经元含有更多的cAMP,这与Ca2+内流会降低cAMP的假设一致。(摘要截短至250字)