Suppr超能文献

Heterogeneity of adenovirus type 5 E1A proteins: multiple serine phosphorylations induce slow-migrating electrophoretic variants but do not affect E1A-induced transcriptional activation or transformation.

作者信息

Richter J D, Slavicek J M, Schneider J F, Jones N C

机构信息

Cell Biology Group, Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545.

出版信息

J Virol. 1988 Jun;62(6):1948-55. doi: 10.1128/JVI.62.6.1948-1955.1988.

Abstract

The 289-amino-acid product encoded by the adenovirus E1A 13S mRNA has several pleiotropic activities, including transcriptional activation, transcriptional repression, and when acting in concert with certain oncogene products, cell transformation. In all cell types in which E1A has been introduced (except bacteria), E1A protein is extensively posttranslationally modified to yield several isoelectric and molecular weight variants. The most striking variant is one that has a retarded mobility, by about Mr = 2,000, in sodium dodecyl sulfate gels. We have investigated the nature of this modification and have assessed its importance for E1A activity. Phosphorylation is responsible for the altered mobility of E1A, since acid phosphatase treatment eliminates the higher apparent molecular weight products. By using several E1A deletion mutants, we show that at least two seryl residues, residing between residues 86 and 120 and 224 and 289, are the sites of phosphorylation and that each phosphorylation can independently induce the mobility shift. However, E1A mutants lacking these seryl residues transcriptionally activate the adenovirus E3 and E2A promoters and transform baby rat kidney cells to near wild-type levels.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1730/253278/f520743d20fa/jvirol00085-0120-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验