Suppr超能文献

经股截肢者在平地上行走时对假肢膝关节对线变化的生物力学反应。

The biomechanical response of persons with transfemoral amputation to variations in prosthetic knee alignment during level walking.

作者信息

Koehler-McNicholas Sara R, Lipschutz Robert D, Gard Steven A

机构信息

Northwestern University Prosthetics-Orthotics Center, Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL.

Jesse Brown VA Medical Center, Chicago, IL.

出版信息

J Rehabil Res Dev. 2016;53(6):1089-1106. doi: 10.1682/JRRD.2014.12.0311.

Abstract

Prosthetic alignment is an important factor in the overall fit and performance of a lower-limb prosthesis. However, the association between prosthetic alignment and control strategies used by persons with transfemoral amputation to coordinate the movement of a passive prosthetic knee is poorly understood. This study investigated the biomechanical response of persons with transfemoral amputation to systematic perturbations in knee joint alignment during a level walking task. Quantitative gait data were collected for three alignment conditions: bench alignment, 2 cm anterior knee translation (ANT), and 2 cm posterior knee translation (POST). In response to a destabilizing alignment perturbation (i.e., the ANT condition), participants significantly increased their early-stance hip extension moment, confirming that persons with transfemoral amputation rely on a hip extensor strategy to maintain knee joint stability. However, participants also decreased the rate at which they loaded their prosthesis, decreased their affected-side step length, increased their trunk flexion, and maintained their prosthesis in a more vertical posture at the time of opposite toe off. Collectively, these results suggest that persons with transfemoral amputation rely on a combination of strategies to coordinate stance-phase knee flexion. Further, comparatively few significant changes were observed in response to the POST condition, suggesting that a bias toward posterior alignment may have fewer implications in terms of stance-phase, knee joint control.

摘要

假肢对线是下肢假肢整体适配性和性能的一个重要因素。然而,对于经股骨截肢者使用的假肢对线与协调被动假肢膝关节运动的控制策略之间的关联,人们了解甚少。本研究调查了经股骨截肢者在水平行走任务期间对膝关节对线的系统性扰动的生物力学反应。针对三种对线情况收集了定量步态数据:台架对线、膝关节向前平移2厘米(ANT)以及膝关节向后平移2厘米(POST)。在应对使对线不稳定的扰动时(即ANT情况),参与者显著增加了其早期支撑期的髋关节伸展力矩,证实经股骨截肢者依靠髋关节伸展策略来维持膝关节稳定性。然而,参与者还降低了其加载假肢的速率,减小了患侧步长,增加了躯干前屈,并在对侧足趾离地时将假肢保持在更垂直的姿势。总体而言,这些结果表明经股骨截肢者依靠多种策略的组合来协调支撑期膝关节屈曲。此外,针对POST情况观察到的显著变化相对较少,这表明偏向后方对线在支撑期膝关节控制方面可能影响较小。

相似文献

3
Effect of prosthetic alignment on gait and biomechanical loading in individuals with transfemoral amputation: A preliminary study.
Gait Posture. 2019 Jun;71:219-226. doi: 10.1016/j.gaitpost.2019.04.026. Epub 2019 Apr 25.
5
Changes in lower extremity joint moments one-year following osseointegration in individuals with Transfemoral lower-limb amputation: A case series.
Clin Biomech (Bristol). 2023 Apr;104:105948. doi: 10.1016/j.clinbiomech.2023.105948. Epub 2023 Mar 27.
8
The effect of prosthetic alignment on hip and knee joint kinetics in individuals with transfemoral amputation.
Gait Posture. 2020 Feb;76:85-91. doi: 10.1016/j.gaitpost.2019.11.006. Epub 2019 Nov 7.

引用本文的文献

1
Transfemoral prosthetic simulators versus amputees: ground reaction forces and spatio-temporal parameters in gait.
R Soc Open Sci. 2024 Mar 27;11(3):231854. doi: 10.1098/rsos.231854. eCollection 2024 Mar.
2
A pelvic kinematic approach for calculating hip angles for active hip disarticulation prosthesis control.
J Neuroeng Rehabil. 2023 Nov 9;20(1):152. doi: 10.1186/s12984-023-01273-x.
3
Unilateral transfemoral osseointegrated prostheses improve joint loading during walking.
J Biomech. 2023 Jun;155:111658. doi: 10.1016/j.jbiomech.2023.111658. Epub 2023 May 26.
5
An Extensive Set of Kinematic and Kinetic Data for Individuals with Intact Limbs and Transfemoral Prosthesis Users.
Appl Bionics Biomech. 2020 Nov 9;2020:8864854. doi: 10.1155/2020/8864854. eCollection 2020.

本文引用的文献

1
Cross-validation of a portable, six-degree-of-freedom load cell for use in lower-limb prosthetics research.
J Biomech. 2014 Apr 11;47(6):1542-7. doi: 10.1016/j.jbiomech.2014.01.048. Epub 2014 Feb 15.
2
Principles of obstacle avoidance with a transfemoral prosthetic limb.
Med Eng Phys. 2012 Oct;34(8):1109-16. doi: 10.1016/j.medengphy.2011.11.017. Epub 2011 Dec 22.
3
Stabilizing moments of force on a prosthetic knee during stance in the first steps after gait initiation.
Med Eng Phys. 2012 Jul;34(6):733-9. doi: 10.1016/j.medengphy.2011.09.017. Epub 2011 Oct 12.
4
Gait adjustments in obstacle crossing, gait initiation and gait termination after a recent lower limb amputation.
Clin Rehabil. 2009 Jul;23(7):659-71. doi: 10.1177/0269215509102947. Epub 2009 May 26.
5
Design optimization of an above-knee prosthesis based on the kinematics of gait.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:4274-7. doi: 10.1109/IEMBS.2008.4650154.
6
Effect of trunk inclination on lower limb joint and lumbar moments in able men during the stance phase of gait.
Clin Biomech (Bristol). 2009 Feb;24(2):190-5. doi: 10.1016/j.clinbiomech.2008.10.005. Epub 2008 Dec 16.
7
A kinematics and kinetic comparison of overground and treadmill running.
Med Sci Sports Exerc. 2008 Jun;40(6):1093-100. doi: 10.1249/MSS.0b013e3181677530.
8
Can treadmill walking be used to assess propulsion generation?
J Biomech. 2008;41(8):1805-8. doi: 10.1016/j.jbiomech.2008.03.009. Epub 2008 Apr 23.
9
Estimating the prevalence of limb loss in the United States: 2005 to 2050.
Arch Phys Med Rehabil. 2008 Mar;89(3):422-9. doi: 10.1016/j.apmr.2007.11.005.
10
Walking patterns change rapidly following asymmetrical lower extremity loading.
Hum Mov Sci. 2007 Jun;26(3):412-25. doi: 10.1016/j.humov.2006.12.001. Epub 2007 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验