Suppr超能文献

短暂的蛋白质与DNA结合塑造稳定的核小体和染色质结构域。

Ephemeral Protein Binding to DNA Shapes Stable Nuclear Bodies and Chromatin Domains.

作者信息

Brackley Chris A, Liebchen Benno, Michieletto Davide, Mouvet Francois, Cook Peter R, Marenduzzo Davide

机构信息

SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom.

Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.

出版信息

Biophys J. 2017 Mar 28;112(6):1085-1093. doi: 10.1016/j.bpj.2017.01.025.

Abstract

Fluorescence microscopy reveals that the contents of many (membrane-free) nuclear bodies exchange rapidly with the soluble pool while the underlying structure persists; such observations await a satisfactory biophysical explanation. To shed light on this, we perform large-scale Brownian dynamics simulations of a chromatin fiber interacting with an ensemble of (multivalent) DNA-binding proteins able to switch between an "on" (binding) and an "off" (nonbinding) state. This system provides a model for any DNA-binding protein that can be posttranslationally modified to change its affinity for DNA (e.g., through phosphorylation). Protein switching is a nonequilibrium process, and it leads to the formation of clusters of self-limiting size, where individual proteins in a cluster exchange with the soluble pool with kinetics similar to those seen in photobleaching experiments. This behavior contrasts sharply with that exhibited by nonswitching proteins, which are permanently in the on-state; when these bind to DNA nonspecifically, they form clusters that grow indefinitely in size. To explain these findings, we propose a mean-field theory from which we obtain a scaling relation between the typical cluster size and the protein switching rate. Protein switching also reshapes intrachromatin contacts to give networks resembling those seen in topologically associating domains, as switching markedly favors local (short-range) contacts over distant ones. Our results point to posttranslational modification of chromatin-bridging proteins as a generic mechanism driving the self-assembly of highly dynamic, nonequilibrium, protein clusters with the properties of nuclear bodies.

摘要

荧光显微镜显示,许多(无膜)核小体的内容物能与可溶性组分快速交换,而其基础结构保持不变;此类观察结果尚待得到令人满意的生物物理学解释。为阐明这一点,我们对一条染色质纤维与一组(多价)能够在“开启”(结合)和“关闭”(非结合)状态之间切换的DNA结合蛋白进行了大规模布朗动力学模拟。该系统为任何可通过翻译后修饰改变其对DNA亲和力(例如通过磷酸化)的DNA结合蛋白提供了一个模型。蛋白质切换是一个非平衡过程,它会导致形成大小自我限制的簇,其中簇内的单个蛋白质与可溶性组分交换的动力学与光漂白实验中观察到的类似。这种行为与非切换蛋白的行为形成鲜明对比,非切换蛋白永久处于开启状态;当它们非特异性地与DNA结合时,会形成大小无限增长的簇。为解释这些发现,我们提出了一种平均场理论,从中我们得到了典型簇大小与蛋白质切换速率之间的标度关系。蛋白质切换还重塑了染色质内接触,使其形成类似于拓扑相关结构域中的网络,因为切换明显更有利于局部(短程)接触而非远距离接触。我们的结果表明,染色质桥连蛋白的翻译后修饰是驱动具有核小体特性的高度动态、非平衡蛋白质簇自组装的一种通用机制。

相似文献

1
Ephemeral Protein Binding to DNA Shapes Stable Nuclear Bodies and Chromatin Domains.
Biophys J. 2017 Mar 28;112(6):1085-1093. doi: 10.1016/j.bpj.2017.01.025.
3
The interaction of DNA with multi-Cys2His2 zinc finger proteins.
J Phys Condens Matter. 2015 Feb 18;27(6):064107. doi: 10.1088/0953-8984/27/6/064107. Epub 2015 Jan 7.
4
A simple model for DNA bridging proteins and bacterial or human genomes: bridging-induced attraction and genome compaction.
J Phys Condens Matter. 2015 Feb 18;27(6):064119. doi: 10.1088/0953-8984/27/6/064119. Epub 2015 Jan 7.
5
Metal-dependent folding and stability of nuclear hormone receptor DNA-binding domains.
J Mol Biol. 2002 May 24;319(1):87-106. doi: 10.1016/S0022-2836(02)00236-X.
6
Dynamic as well as stable protein interactions contribute to genome function and maintenance.
Chromosome Res. 2011 Jan;19(1):131-51. doi: 10.1007/s10577-010-9161-8.
7
LAP2alpha and BAF transiently localize to telomeres and specific regions on chromatin during nuclear assembly.
J Cell Sci. 2004 Dec 1;117(Pt 25):6117-28. doi: 10.1242/jcs.01529. Epub 2004 Nov 16.
8
Formation of Chromatin Subcompartments by Phase Separation.
Biophys J. 2018 May 22;114(10):2262-2270. doi: 10.1016/j.bpj.2018.03.011. Epub 2018 Apr 6.
9
Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation.
Nature. 2006 Nov 16;444(7117):387-90. doi: 10.1038/nature05283.
10
Nonspecific bridging-induced attraction drives clustering of DNA-binding proteins and genome organization.
Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):E3605-11. doi: 10.1073/pnas.1302950110. Epub 2013 Sep 3.

引用本文的文献

1
2
A Multiscale Perspective on Chromatin Architecture through Polymer Physics.
Physiology (Bethesda). 2025 May 1;40(3):0. doi: 10.1152/physiol.00050.2024. Epub 2024 Nov 27.
3
Genome-wide chromosome architecture prediction reveals biophysical principles underlying gene structure.
Cell Genom. 2024 Dec 11;4(12):100698. doi: 10.1016/j.xgen.2024.100698. Epub 2024 Nov 25.
5
OpenNucleome for high-resolution nuclear structural and dynamical modeling.
Elife. 2024 Aug 15;13:RP93223. doi: 10.7554/eLife.93223.
6
Polymer physics models reveal structural folding features of single-molecule gene chromatin conformations.
bioRxiv. 2024 Jul 16:2024.07.16.603769. doi: 10.1101/2024.07.16.603769.
7
Exploring protein-mediated compaction of DNA by coarse-grained simulations and unsupervised learning.
Biophys J. 2024 Sep 17;123(18):3231-3241. doi: 10.1016/j.bpj.2024.07.023. Epub 2024 Jul 23.
8
Vertebrate centromeres in mitosis are functionally bipartite structures stabilized by cohesin.
Cell. 2024 Jun 6;187(12):3006-3023.e26. doi: 10.1016/j.cell.2024.04.014. Epub 2024 May 13.
9
Polycomb repression of Hox genes involves spatial feedback but not domain compaction or phase transition.
Nat Genet. 2024 Mar;56(3):493-504. doi: 10.1038/s41588-024-01661-6. Epub 2024 Feb 15.
10
Regulation of chromatin architecture by transcription factor binding.
Elife. 2024 Jan 19;12:RP91320. doi: 10.7554/eLife.91320.

本文引用的文献

1
Arginine phosphorylation marks proteins for degradation by a Clp protease.
Nature. 2016 Nov 3;539(7627):48-53. doi: 10.1038/nature20122. Epub 2016 Oct 6.
4
Chromatin topology is coupled to Polycomb group protein subnuclear organization.
Nat Commun. 2016 Jan 13;7:10291. doi: 10.1038/ncomms10291.
5
Phase Behavior of DNA in the Presence of DNA-Binding Proteins.
Biophys J. 2016 Jan 5;110(1):51-62. doi: 10.1016/j.bpj.2015.10.027.
6
Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes.
Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):E6456-65. doi: 10.1073/pnas.1518552112. Epub 2015 Oct 23.
7
RNA transcription modulates phase transition-driven nuclear body assembly.
Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):E5237-45. doi: 10.1073/pnas.1509317112. Epub 2015 Sep 8.
8
Multivalency governs HP1α association dynamics with the silent chromatin state.
Nat Commun. 2015 Jun 18;6:7313. doi: 10.1038/ncomms8313.
9
Nuclear bodies: the emerging biophysics of nucleoplasmic phases.
Curr Opin Cell Biol. 2015 Jun;34:23-30. doi: 10.1016/j.ceb.2015.04.003. Epub 2015 May 15.
10
A simple model for DNA bridging proteins and bacterial or human genomes: bridging-induced attraction and genome compaction.
J Phys Condens Matter. 2015 Feb 18;27(6):064119. doi: 10.1088/0953-8984/27/6/064119. Epub 2015 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验