Tangade Ashish Shyam, Mondal Anupam, Wang Jiahui, Kim Young C, Mittal Jeetain
Artie McFerrin Department of Chemical Engineering, Texas A & M University, College Station, Texas 77843, USA.
Center for Materials Physics and Technology, Naval Research Laboratory, Washington, District of Columbia 20375, USA.
bioRxiv. 2025 Jun 10:2025.06.09.658691. doi: 10.1101/2025.06.09.658691.
Biomolecular condensates formed through liquid-liquid phase separation are increasingly recognized as critical regulators of genome organization and gene expression. While the role of proteins in driving phase separation is well-established, how DNA modulates the structure and dynamics of protein-DNA condensates remains less well understood. Here, we employ a minimalist coarse-grained model to investigate the interplay between homotypic protein-protein and heterotypic protein-DNA interactions in governing condensate formation, composition, and internal dynamics. Our simulations reveal that DNA chain length and flexibility critically influence condensate morphology, leading to the emergence of multiphasic and core-shell organizations under strong heterotypic interactions. We find that DNA recruitment into the condensate significantly alters protein mobility, giving rise to differential dynamics of proteins within the condensate. By analyzing the distribution profiles of protein displacements, we identify up to five distinct diffusion modes, including proteins bound to DNA, confined within the dense phase, or freely diffusing. These results provide a mechanistic framework for interpreting spatially heterogeneous protein dynamics observed in chromatin condensates and emphasize the direct role of DNA in tuning condensate properties. Our findings provide new insights into how biophysical parameters may control the functional architecture of protein-DNA condensates in biological systems.
通过液-液相分离形成的生物分子凝聚物越来越被认为是基因组组织和基因表达的关键调节因子。虽然蛋白质在驱动相分离中的作用已得到充分证实,但DNA如何调节蛋白质-DNA凝聚物的结构和动力学仍不太清楚。在这里,我们采用一个极简的粗粒度模型来研究同型蛋白质-蛋白质和异型蛋白质-DNA相互作用在控制凝聚物形成、组成和内部动力学方面的相互作用。我们的模拟表明,DNA链长和柔韧性对凝聚物形态有至关重要的影响,在强烈的异型相互作用下会导致多相和核壳结构的出现。我们发现,DNA被招募到凝聚物中会显著改变蛋白质的流动性,从而导致凝聚物中蛋白质的动力学差异。通过分析蛋白质位移的分布概况,我们确定了多达五种不同的扩散模式,包括与DNA结合的蛋白质、限制在致密相中的蛋白质或自由扩散的蛋白质。这些结果为解释在染色质凝聚物中观察到的空间异质蛋白质动力学提供了一个机制框架,并强调了DNA在调节凝聚物性质方面的直接作用。我们的发现为生物物理参数如何控制生物系统中蛋白质-DNA凝聚物的功能结构提供了新的见解。