Suppr超能文献

激光激活碳纳米颗粒向细胞递送分子过程中的能量转移机制

Energy Transfer Mechanisms during Molecular Delivery to Cells by Laser-Activated Carbon Nanoparticles.

作者信息

Sengupta Aritra, Gray Michael D, Kelly Sean C, Holguin Stefany Y, Thadhani Naresh N, Prausnitz Mark R

机构信息

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia.

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia.

出版信息

Biophys J. 2017 Mar 28;112(6):1258-1269. doi: 10.1016/j.bpj.2017.02.007.

Abstract

Previous studies have shown that exposure of carbon black nanoparticles to nanosecond pulsed near-infrared laser causes intracellular delivery of molecules through hypothesized transient breaks in the cell membrane. The goal of this study is to determine the underlying mechanisms of sequential energy transfer from laser light to nanoparticle to fluid medium to cell. We found that laser pulses on a timescale of 10 ns rapidly heat carbon nanoparticles to temperatures on the order of 1200 K. Heat is transferred from the nanoparticles to the surrounding aqueous medium on a similar timescale, causing vaporization of the surrounding water and generation of acoustic emissions. Nearby cells can be impacted thermally by the hot bubbles and mechanically by fluid mechanical forces to transiently increase cell membrane permeability. The experimental and theoretical results indicate that transfer of momentum and/or heat from the bubbles to the cells are the dominant mechanisms of energy transfer that results in intracellular uptake of molecules. We further conclude that neither thermal expansion of the nanoparticles nor a carbon-steam chemical reaction play a significant role in the observed effects on cells, and that acoustic pressure appears to be concurrent with, but not essential to, the observed bioeffects.

摘要

先前的研究表明,将炭黑纳米颗粒暴露于纳秒脉冲近红外激光下会通过假定的细胞膜瞬时破裂实现分子的细胞内递送。本研究的目的是确定从激光到纳米颗粒再到流体介质最后到细胞的连续能量转移的潜在机制。我们发现,10纳秒时间尺度上的激光脉冲能迅速将碳纳米颗粒加热到1200K左右的温度。热量在类似的时间尺度上从纳米颗粒传递到周围的水性介质,导致周围水的汽化并产生声发射。附近的细胞会受到热气泡的热影响以及流体机械力的机械影响,从而使细胞膜通透性瞬时增加。实验和理论结果表明,气泡向细胞传递动量和/或热量是导致分子细胞内摄取的能量转移的主要机制。我们进一步得出结论,纳米颗粒的热膨胀和碳 - 蒸汽化学反应在观察到的对细胞的影响中均未发挥重要作用,并且声压似乎与观察到的生物效应同时出现,但并非其必需条件。

相似文献

1
Energy Transfer Mechanisms during Molecular Delivery to Cells by Laser-Activated Carbon Nanoparticles.
Biophys J. 2017 Mar 28;112(6):1258-1269. doi: 10.1016/j.bpj.2017.02.007.
3
Effect of laser fluence, nanoparticle concentration and total energy input per cell on photoporation of cells.
Nanomedicine. 2018 Jul;14(5):1667-1677. doi: 10.1016/j.nano.2018.04.015. Epub 2018 Apr 30.
4
Parameters affecting intracellular delivery of molecules using laser-activated carbon nanoparticles.
Nanomedicine. 2016 May;12(4):1003-1011. doi: 10.1016/j.nano.2015.12.380. Epub 2016 Jan 7.
6
Serum Protects Cells and Increases Intracellular Delivery of Molecules by Nanoparticle-Mediated Photoporation.
Int J Nanomedicine. 2021 May 31;16:3707-3724. doi: 10.2147/IJN.S307027. eCollection 2021.
7
Delivery of siRNA to ovarian cancer cells using laser-activated carbon nanoparticles.
Nanomedicine (Lond). 2015;10(11):1775-84. doi: 10.2217/nnm.15.27.
8
Optimization of intracellular macromolecule delivery by nanoparticle-mediated photoporation.
Nanomedicine. 2021 Oct;37:102431. doi: 10.1016/j.nano.2021.102431. Epub 2021 Jun 25.

引用本文的文献

1
Biocompatible and optically stable hydrophobic fluorescent carbon dots for isolation and imaging of lipid rafts in model membrane.
Anal Bioanal Chem. 2022 Aug;414(20):6055-6067. doi: 10.1007/s00216-022-04165-6. Epub 2022 Jun 14.
2
Serum Protects Cells and Increases Intracellular Delivery of Molecules by Nanoparticle-Mediated Photoporation.
Int J Nanomedicine. 2021 May 31;16:3707-3724. doi: 10.2147/IJN.S307027. eCollection 2021.
4
Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts.
Chem Rev. 2018 Aug 22;118(16):7409-7531. doi: 10.1021/acs.chemrev.7b00678. Epub 2018 Jul 27.

本文引用的文献

1
Cell membrane deformation and bioeffects produced by tandem bubble-induced jetting flow.
Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):E7039-47. doi: 10.1073/pnas.1518679112. Epub 2015 Dec 9.
2
Membrane Repair: Mechanisms and Pathophysiology.
Physiol Rev. 2015 Oct;95(4):1205-40. doi: 10.1152/physrev.00037.2014.
3
Delivery of siRNA to ovarian cancer cells using laser-activated carbon nanoparticles.
Nanomedicine (Lond). 2015;10(11):1775-84. doi: 10.2217/nnm.15.27.
4
Effect of direct bubble-bubble interactions on linear-wave propagation in bubbly liquids.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Dec;90(6):063010. doi: 10.1103/PhysRevE.90.063010. Epub 2014 Dec 11.
5
Poloxamer surfactant preserves cell viability during photoacoustic delivery of molecules into cells.
Biotechnol Bioeng. 2015 Feb;112(2):405-15. doi: 10.1002/bit.25363. Epub 2014 Sep 26.
6
Electroporation-based technologies for medicine: principles, applications, and challenges.
Annu Rev Biomed Eng. 2014 Jul 11;16:295-320. doi: 10.1146/annurev-bioeng-071813-104622. Epub 2014 May 27.
7
Endosomal escape: a bottleneck in intracellular delivery.
J Nanosci Nanotechnol. 2014 Jan;14(1):460-74. doi: 10.1166/jnn.2014.9082.
9
Gene therapy and DNA delivery systems.
Int J Pharm. 2014 Jan 1;459(1-2):70-83. doi: 10.1016/j.ijpharm.2013.11.041. Epub 2013 Nov 25.
10
Understanding ultrasound induced sonoporation: definitions and underlying mechanisms.
Adv Drug Deliv Rev. 2014 Jun;72:49-64. doi: 10.1016/j.addr.2013.11.008. Epub 2013 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验