Pavlyukh Y
Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, P.O. Box 3049, 67653, Kaiserslautern, Germany.
Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120, Halle, Germany.
Sci Rep. 2017 Mar 29;7(1):504. doi: 10.1038/s41598-017-00355-w.
In a typical scenario the diagrammatic many-body perturbation theory generates asymptotic series. Despite non-convergence, the asymptotic expansions are useful when truncated to a finite number of terms. This is the reason for the popularity of leading-order methods such as the GW approximation in condensed matter, molecular and atomic physics. Appropriate truncation order required for the accurate description of strongly correlated materials is, however, not known a priori. Here an efficient method based on the Padé approximation is introduced for the regularization of perturbative series allowing to perform higher-order self-consistent calculations and to make quantitative predictions on the convergence of many-body perturbation theories. The theory is extended towards excited states where the Wick theorem is not directly applicable. Focusing on the plasmon-assisted photoemission from graphene, we treat diagrammatically electrons coupled to the excited state plasmons and predict new spectral features that can be observed in the time-resolved measurements.
在一个典型的情形中,图解多体微扰理论会产生渐近级数。尽管这些级数不收敛,但当截断为有限项时,渐近展开是有用的。这就是诸如凝聚态、分子和原子物理中的GW近似等领先阶方法广受欢迎的原因。然而,对于强关联材料的准确描述所需的合适截断阶数事先并不知晓。这里引入了一种基于帕德近似的有效方法来对微扰级数进行正则化,从而能够进行高阶自洽计算,并对多体微扰理论的收敛性做出定量预测。该理论被扩展到威克定理不直接适用的激发态。聚焦于石墨烯的等离子体激元辅助光发射,我们用图解法处理与激发态等离子体激元耦合的电子,并预测了在时间分辨测量中可以观测到的新光谱特征。